our logo depicts the chemical
makeup of the neuropeptides
studied in the lab
Working in the Lab
working in the Lab

Research in the Veenema Lab

Our lab uses a multi-level approach to the analysis of the neural basis of social behavior. We employ a wide variety of behavioral tests (measuring specific social, emotional, and cognitive behaviors), molecular and biochemical assays (measuring hormone, peptide, gene, and receptor expression), stereotaxic surgery combined with molecular and pharmacological manipulations (altering neuropeptide activation in the brain), and in vivo microdialysis (measuring dynamic release of neuropeptides in the brain) to identify the neural mechanisms and circuits important for the regulation of social behavior.

rodent fMRI analysis (left) and rat brain cryocutting (right)
Dynamic release of neuropeptides during the display of social behavior

There is strong evidence that the neuropeptides vasopressin and oxytocin via activation of specific receptors in the brain play key roles in the regulation of social behavior. However, a major limitation to our understanding of the roles of vasopressin and oxytocin in social behavior is that we know very little about vasopressin and oxytocin synaptic neurotransmission and how this is functionally linked to the display of social behavior. Our lab is among only a few labs in the world that have specialized in measuring vasopressin and oxytocin release within specific brain regions of rats exposed to social behavior tests.

Brain region-specific effects of vasopressin and oxytocin on social behavior

Vasopressin and oxytocin regulate a wide variety of social behaviors, including social recognition, aggression, and affiliation. It is expected that these diverse behaviors each require activation of different brain regions. Vasopressin and oxytocin are synthesized in a number of brain nuclei (e.g. the bed nucleus of the stria terminalis, medial amygdala, the paraventricular nucleus, and the supraoptic nucleus) and influence many brain regions (e.g. lateral septum, hippocampus, cortex, and amygdala) due to the wide-spread distribution of their receptors (VP 1a receptor, V1b receptor, and the OT receptor). Using a combination of different techniques, we aim to reveal social behavior-specific brain circuits activated by vasopressin and/or oxytocin.

social recognition
social recognition
Neuropeptide regulation of social behavior at immature ages

Notwithstanding the current interest in the roles of vasopressin and oxytocin in social behavior, virtually nothing is known about the function of these neuropeptides during development. In this project, we aim to acquire insights in the roles of the vasopressin and oxytocin systems in the development of social behavior. We specifically focus on two important juvenile social behaviors, i.e., play-fighting and social recognition. Play-fighting is common in all mammalian species (including humans) and forms the basis for the development of adequate adult social behavior. In rats, play-fighting is the earliest form of non-mother directed social behavior and peaks at 5 weeks of age. Social recognition consists of the ability to recognize individuals and is essential for all social relationships.

play fighting
juveniles play fighting
Behavioral function of sex differences in vasopressin and oxytocin

Several psychiatric disorders are sex-biased with a higher prevalence in males (e.g. schizophrenia, conduct disorders, autism spectrum disorders) or in females (e.g. mood and anxiety disorders, borderline personality disorder). This may be due to sex differences in the brain, in behavior, and in sensitivity to stressful stimuli. Understanding the behavioral function of sex differences in the brain is essential towards gaining insights into the mechanisms underlying the sex-bias in psychiatric disorders. The vasopressin and oxytocin systems show robust sex differences in the brain. For example, across different rodent species, males have generally more vasopressin-expressing cells in the bed nucleus of the stria terminalis and medial amygdala and denser vasopressin-axonal fibers in the lateral septum than females do (see for review De Vries & Panzica, Neuroscience 2006). However, it is unclear to what extent sex differences in the VP and OT systems cause sex-specific regulation of social behavior.

Exploring the roles of vasopressin and oxytocin in social motivation

We are interested in understanding the neuronal mechanisms underlying low versus high social motivation. In healthy rats, there are considerable individual differences in social investigation behavior. We use this individual variation to explore the roles of the vasopressin and oxytocin systems in social investigation behavior. This research may ultimately be valuable in understanding the neurobiological underpinnings of low versus high social motivation in humans.

Involvement of neuropeptides in early life stress-induced changes in social behavior

Early life stress (child neglect, child abuse, child trauma, bullying) is a major risk factor for the development of pervasive social deficits that are a key feature of mood, anxiety, and personality disorders. We seek to understand the brain mechanisms underlying social dysfunction in these psychiatric disorders. We employ different early life stress paradigms in rodents to simulate human child maltreatment conditions and investigate the extent to which changes in vasopressin and/or oxytocin contribute to early life stress-induced changes in social behavior.

maternal separation
maternal separation