Exercise 1. Find the eigenvalues of \(A = \begin{bmatrix} 7 & 4 & 4 \\ -8 & -4 & 0 \\ -8 & -4 & -5 \end{bmatrix} \in M_3(\mathbb{C}) \), and find a basis for each eigenspace. Is \(A \) is diagonalizable? If so, find an invertible matrix \(C \) and a diagonal matrix \(D \) such that \(A = CDC^{-1} \).

Exercise 2. Find the eigenvalues of \(A = \begin{bmatrix} 0 & 1 & 2 \\ -5 & 5 & 3 \\ -4 & 1 & 6 \end{bmatrix} \in M_3(\mathbb{C}) \), and find a basis for each eigenspace. Is \(A \) is diagonalizable? If so, find an invertible matrix \(C \) and a diagonal matrix \(D \) such that \(A = CDC^{-1} \).

Exercise 3.

(a) Suppose we have an \(n \times n \) matrix

\[
P = \begin{pmatrix} p_{11}(x) & \cdots & p_{1n}(x) \\ \vdots & \ddots & \vdots \\ p_{n1}(x) & \cdots & p_{nn}(x) \end{pmatrix}
\]

whose entries are polynomials \(p_{ij}(x) \) with coefficients in \(F \). Prove that the degree of \(\det(P) \) is at most the sum of the degrees of all of its entries.

(b) Prove that the characteristic polynomial of a matrix \(A \in M_n(F) \) is monic of degree \(n \).

Exercise 4. The trace of a square matrix \(A = (a_{ij}) \in M_n(F) \) is defined as the sum of its diagonal entries: \(\text{trace}(A) = a_{11} + a_{22} + \cdots + a_{nn} \). Prove that \(\text{trace}(AB) = \text{trace}(BA) \). Use this to prove that any two similar matrices have the same trace.

Exercise 5. Suppose \(A \in M_n(F) \).

(a) Show that there is some nonzero polynomial \(f(x) \) of degree \(\deg(f) \leq n^2 \) such that \(f(A) = 0 \). Hint: use the fact that \(M_n(F) \) is a vector space of dimension \(n^2 \).

(b) Among all nonzero monic polynomials \(f(x) \) with \(f(A) = 0 \), let \(m_A(x) \) be the one of smallest degree. The polynomial \(m_A(x) \) is the minimal polynomial of \(A \). Use the division algorithm to show that for any polynomial \(f(x) \),

\[
f(A) = 0 \iff f(x) \text{ is a multiple of } m_A(x).
\]

Exercise 6. Find the minimal and characteristic polynomials of \(\begin{bmatrix} 4 & 2 \\ -3 & 5 \end{bmatrix} \) and \(\begin{bmatrix} -13 & 5 & 5 \\ -15 & 7 & 5 \\ -15 & 5 & 7 \end{bmatrix} \), and for each matrix verify that the characteristic polynomial is a multiple of the minimal polynomial. Remark: The Cayley-Hamilton theorem asserts that the characteristic polynomial is always a multiple of the minimal polynomial.