Exercise 1. Find the eigenvalues of $A = \begin{bmatrix} 7 & 4 & 4 \\ -8 & -4 & -5 \end{bmatrix} \in M_3(\mathbb{C})$, and find a basis for each eigenspace. Is A is diagonalizable? If so, find an invertible matrix C and a diagonal matrix D such that $A = CDC^{-1}$.

Solution. The matrix A has characteristic polynomial

$$c_A(x) = (x + 1)^2(x - 3),$$

and so -1 and 3 are the only eigenvalues. The eigenspaces are

$$E_{-1} = \text{Span}\left\{ \begin{bmatrix} -1/2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1/2 \\ 0 \\ 1 \end{bmatrix} \right\}$$

and

$$E_3 = \text{Span}\left\{ \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \right\}.$$

These three vectors are a basis of eigenvectors, and if we set

$$C = \begin{bmatrix} -1/2 & -1/2 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

then

$$A = C \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{bmatrix} C^{-1}.$$

Exercise 2. Find the eigenvalues of $A = \begin{bmatrix} 0 & 1 & 2 \\ -5 & 5 & 3 \\ -4 & 1 & 6 \end{bmatrix} \in M_3(\mathbb{C})$, and find a basis for each eigenspace. Is A is diagonalizable? If so, find an invertible matrix C and a diagonal matrix D such that $A = CDC^{-1}$.

Solution. First we compute the characteristic polynomial

$$c_A(x) = (x - 3)(x - 4)^2.$$

The eigenvalues are 3 and 4, and the corresponding eigenspaces are

$$E_3 = \text{Span}\left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}.$$
and

\[E_4 = \text{Span} \left\{ \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \right\}. \]

As \(\dim(E_3) + \dim(E_4) < 3 \), a result from class tells us that \(A \) is not diagonalizable. \(\Box \)

Exercise 3.

(a) Suppose we have an \(n \times n \) matrix

\[
P = \begin{pmatrix}
 p_{11}(x) & \cdots & p_{1n}(x) \\
 \vdots & \ddots & \vdots \\
 p_{n1}(x) & \cdots & p_{nn}(x)
\end{pmatrix}
\]

whose entries are polynomials \(p_{ij}(x) \) with coefficients in \(F \). Prove that the degree of \(\det(P) \) is at most the sum of the degrees of all of its entries.

(b) Prove that the characteristic polynomial of a matrix \(A \in M_n(F) \) is monic of degree \(n \).

Solution.

(a) The proof is by induction on the size of the matrix. If \(P \) is a \(1 \times 1 \) matrix the claim is obvious. Let \(d \) be the sum of all degrees of the entries of \(P \). Let \(P_{ij} \) be the matrix obtained from \(P \) by deleting the \(i \)th row and \(j \)th column, and let \(d_{ij} \) be the sum of all the degrees of entries of \(P_{ij} \). As we deleted the polynomial \(p_{ij}(x) \) when we formed \(P_{ij} \), we must have

\[d_{ij} + \deg(p_{ij}) \leq d_{ij} + \text{(all degrees of deleted polynomials)} = d. \]

Now compute the determinant of \(P \) by expanding along the first row, so that

\[
\det(P) = p_{11}(x) \det(P_{11}) - p_{12}(x) \det(P_{12}) + \cdots \pm p_{1n}(x) \det(P_{1n}).
\]

By the induction hypothesis each term has degree at most \(\deg(p_{1j}) + d_{1j} \leq d \), and hence the same is true of \(\det(P) \).

(b) The proof is by induction. The case of a \(1 \times 1 \) matrix is obvious.

For the \(n \times n \) case: If \(A = (a_{ij}) \) then we can compute the characteristic polynomial

\[
c_A(x) = \begin{vmatrix}
 x - a_{11} & -a_{12} & \cdots & -a_{1n} \\
 -a_{21} & x - a_{22} & \cdots & -a_{2n} \\
 \vdots & \ddots & \ddots & \vdots \\
 -a_{n1} & -a_{n2} & \cdots & x - a_{nn}
\end{vmatrix}
\]

by expanding along the top row. Using part (a) we find that

\[
c_A(x) = (x - a_{11}) \begin{vmatrix}
 x - a_{22} & -a_{22} & \cdots & -a_{2n} \\
 -a_{31} & x - a_{32} & \cdots & -a_{3n} \\
 \vdots & \ddots & \ddots & \vdots \\
 -a_{n1} & -a_{n2} & \cdots & x - a_{nn}
\end{vmatrix} + \text{(terms of degree \(\leq n - 2 \)).}
\]

By the induction hypothesis

\[
\begin{vmatrix}
 x - a_{22} & -a_{22} & \cdots & -a_{2n} \\
 -a_{31} & x - a_{32} & \cdots & -a_{3n} \\
 \vdots & \ddots & \ddots & \vdots \\
 -a_{n1} & -a_{n2} & \cdots & x - a_{nn}
\end{vmatrix}
\]

is a monic polynomial of degree \(n - 1 \), and it follows that \(c_A(x) \) is monic of degree \(n \). \(\Box \)
Exercise 4. The trace of a square matrix $A = (a_{ij}) \in M_n(F)$ is defined as the sum of its diagonal entries: $\text{trace}(A) = a_{11} + a_{22} + \cdots + a_{nn}$. Prove that $\text{trace}(AB) = \text{trace}(BA)$. Use this to prove that any two similar matrices have the same trace.

Solution. Write $A = (a_{ij})$ and $B = (b_{ij})$ for the entries of A and B. If we let $X = AB$ and $Y = BA$ then X and Y have entries

$$x_{ij} = a_{i1}b_{1j} + \cdots + a_{in}b_{nj}$$

and

$$y_{ij} = b_{i1}a_{1j} + \cdots + b_{in}a_{nj}.$$

Therefore

$$\text{trace}(AB) = \text{trace}(X) = x_{11} + x_{22} + \cdots + x_{nn}$$

$$= (a_{11}b_{11} + \cdots + a_{1n}b_{n1})$$

$$+ (a_{21}b_{12} + \cdots + a_{2n}b_{n2})$$

$$\vdots$$

$$+ (a_{n1}b_{1n} + \cdots + a_{nn}b_{nn})$$

$$= \sum_{k,\ell} a_{k\ell}b_{\ell k}.$$

and

$$\text{trace}(BA) = \text{trace}(Y) = y_{11} + y_{22} + \cdots + y_{nn}$$

$$= (b_{11}a_{11} + \cdots + b_{1n}a_{n1})$$

$$+ (b_{21}a_{12} + \cdots + b_{2n}a_{n2})$$

$$\vdots$$

$$+ (b_{n1}a_{1n} + \cdots + b_{nn}a_{nn})$$

$$= \sum_{k,\ell} b_{k\ell}a_{\ell k}.$$

These formulas for $\text{trace}(AB)$ and $\text{trace}(BA)$ are the same (the two sums are the same, just with the terms rearranged).

For the final claim about similar matrices having the same trace: suppose A and B are similar. Thus there is an invertible matrix D such that $A = DBD^{-1}$. From what we proved above

$$\text{trace}(A) = \text{trace}(DBD^{-1}) = \text{trace}(D^{-1}DB) = \text{trace}(B).$$

Exercise 5. Suppose $A \in M_n(F)$.

(a) Show that there is some nonzero polynomial $f(x)$ of degree $\deg(f) \leq n^2$ such that $f(A) = 0$. Hint: use the fact that $M_n(F)$ is a vector space of dimension n^2.

(b) Among all nonzero monic polynomials $f(x)$ with $f(A) = 0$, let $m_A(x)$ be the one of smallest degree. The polynomial $m_A(x)$ is the minimal polynomial of A. Use the division algorithm to show that for any polynomial $f(x)$,

$$f(A) = 0 \iff f(x) \text{ is a multiple of } m_A(x).$$
Solution. (a) Recall that $M_n(F)$ is a vector space of dimension n^2. The list $I, A, A^2, \ldots, A^{n^2}$ has $n^2 + 1$ elements, and so these matrices must be linearly dependent. In other words, we can find a nontrivial linear relation

$$a_{n^2}A^{n^2} + a_{n^2-1}A^{n^2-1} + \cdots + a_1A + a_0I = 0.$$

In other words, A is a zero of the polynomial

$$f(x) = a_{n^2}x^{n^2} + a_{n^2-1}x^{n^2-1} + \cdots + a_1x + a_0 = 0$$

(b) First suppose that $f(x)$ is a multiple of $m_A(x)$, so that $f(x) = m_A(x)q(x)$ for some polynomial $q(x)$. Setting $x = A$ shows that

$$f(A) = m_A(A)q(A).$$

As $m_A(A) = 0$, by definition of minimal polynomial, we find that $f(A) = 0$.

Now suppose that $f(A) = 0$. By the division algorithm there are polynomials $q(x)$ and $r(x)$ such that

$$f(x) = m_A(x)q(x) + r(x)$$

and $\deg(r(x)) < \deg(m_A(x))$. Setting $x = A$ shows that $0 = r(A)$. Among all nonzero polynomials having A as a zero, $m_A(x)$ has the smallest possible degree. As $r(x)$ is a polynomial of lower degree having A as a zero, the only possibility is that $r(x) = 0$. Thus $f(x) = m_A(x)q(x)$.

Exercise 6. Find the minimal and characteristic polynomials of $\begin{bmatrix} 4 & 2 \\ -3 & 5 \end{bmatrix}$ and $\begin{bmatrix} -13 & 5 & 5 \\ -15 & 7 & 5 \\ -15 & 5 & 7 \end{bmatrix}$, and for each matrix verify that the characteristic polynomial is a multiple of the minimal polynomial. Remark: The Cayley-Hamilton theorem asserts that the characteristic polynomial is always a multiple of the minimal polynomial.

Solution. The minimal and characteristic polynomials of $A = \begin{bmatrix} 4 & 2 \\ -3 & 5 \end{bmatrix}$ are

$$m_A(x) = x^2 - 9x + 26$$
$$c_A(x) = x^2 - 9x + 26,$$

and so certainly $c_A(x)$ is a multiple of $m_A(x)$.

The minimal and characteristic polynomials of $A = \begin{bmatrix} -13 & 5 & 5 \\ -15 & 7 & 5 \\ -15 & 5 & 7 \end{bmatrix}$, are

$$m_A(x) = x^2 + x - 6$$
$$c_A(x) = x^3 - x^2 - 8x + 12,$$

and

$$c_A(x) = m_A(x) \cdot (x - 2).$$