Problem set #6

Due March 19, 2018

In all of the following exercises F denotes \mathbb{R} or \mathbb{C}, and V and W are F-vector spaces.

Exercise 1. Suppose $T : V \to W$ is a linear map, and $v_1, \ldots, v_n \in V$. For each statement give a proof or a counterexample.

(a) If v_1, \ldots, v_n are linearly independent, then $T(v_1), \ldots, T(v_n)$ are linearly independent.

(b) If $T(v_1), \ldots, T(v_n)$ are linearly independent, then v_1, \ldots, v_n are linearly independent.

Exercise 2. Let $T : \mathbb{R}^5 \to \mathbb{R}^3$ be the linear map corresponding to

$$A = \begin{bmatrix} 1 & 2 & 1 & 0 & 1 \\ 2 & 1 & 0 & 0 & 2 \\ -1 & 0 & 1 & 1 & 1 \end{bmatrix}.$$

Find all solutions to $T(x) = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$.

Exercise 3. Show that there is a unique linear map $T : \mathbb{R}^3 \to \mathbb{R}^3$ satisfying

$$T \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \quad T \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}, \quad T \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

and find the corresponding 3×3 matrix.

Exercise 4. Suppose V is finite dimensional with basis v_1, \ldots, v_n. Define linear maps $T_1, \ldots, T_n \in \text{Hom}(V, F)$ as follows: if $v = c_1 v_1 + \cdots + c_n v_n$ then

$$T_1(v) = c_1, \quad \vdots, \quad T_n(v) = c_n.$$

Prove that T_1, \ldots, T_n is a basis of $\text{Hom}(V, F)$. (Do not assume that $\text{Hom}(V, F)$ has dimension n. We have stated this in class, but have not yet proved it.)

Exercise 5. Suppose V is finite dimensional and $U \subset V$ is a subspace. Show that any linear map $T : U \to W$ can be extended to a linear map defined on all of V. In other words, show that there is a linear map $T' : V \to W$ such that $T(u) = T'(u)$ for all $u \in U$.

Exercise 6. Suppose V is finite dimensional and W is infinite dimensional. Show that $\text{Hom}(V, W)$ is infinite dimensional.