Here are some number theory problems...

- Given a positive integer \(n \), let \(p(n) \) be the product of the nonzero digits of \(n \). Let
 \[
 S = p(1) + p(2) + \cdots + p(999).
 \]
 What’s the largest prime factor of \(S \)?

- If \(a \equiv b \pmod{n} \), show that \(a^n \equiv b^n \pmod{n^2} \). Is the converse true?

- Show that the sequence 1, 11, 111, \ldots contains an infinite subsequence whose terms are pairwise relatively prime.

- Show that for any fixed positive integer \(n \), the sequence
 \[
 2, 2^2, 2^{2^2}, 2^{2^{2^2}} \ldots \pmod{n}
 \]
 is eventually constant.

- **Putnam 1986 A2**
 What is the units (that is, rightmost) digit of
 \[
 \left\lfloor \frac{10^{20000}}{10^{100} + 3} \right\rfloor?
 \]
 Here \(\lfloor x \rfloor \) is the greatest integer less than or equal to \(x \).

- **Putnam 2011 B2**
 Let \(S \) be the set of all ordered triples \((p, q, r) \) of prime numbers for which at least one rational number \(x \) satisfies \(px^2 + qx + r = 0 \). Which primes appear in seven or more elements of \(S \)?