Here are some problems involving Euclidean Geometry...

- Prove that in an arbitrary triangle, the sum of the lengths of the altitudes is less than the triangle’s perimeter.

- Consider a pyramid whose base is an n-gon, where n is odd. Think of the edges as vectors whose direction we will choose. Can we choose so that the sum of the vectors is 0?

- Let $ABCD$ be a convex quadrilateral, and let M, N be the midpoints of AD, BC respectively. Prove that $MN = \frac{AB+CD}{2}$ if and only if AB is parallel to CD.

- Consider n red and n blue points in the plane, no 3 of them collinear. Prove that we can connect each red point to a blue one with a segment and have no 2 segments intersect.

- **Putnam 2001 A4**
 Triangle ABC has an area 1. Points E, F, G lie, respectively, on sides BC, CA, AB such that AE bisects BF at point R, BF bisects CG at point S, and CG bisects AE at point T. Find the area of the triangle RST.

- **Putnam 2008 B1**
 What is the maximum number of rational points that can lie on a circle in \mathbb{R}^2 whose center is not a rational point? (A rational point is a point both of whose coordinates are rational numbers.)