Ionospheric Data Processing and Analysis

Dr. Charles Carrano¹
Dr. Keith Groves²

¹Boston College, Institute for Scientific Research
²Air Force Research Laboratory, Space Vehicles Directorate

Workshop on Satellite Navigation Science and Technology for Africa
The Abdus Salam ICTP, Trieste, Italy March 23 - April 9, 2009
This talk is a tutorial on Total Electron Content (TEC) estimation using a GPS receiver

- Describe the GPS observables and the various linear combinations used to estimate TEC
- Demonstrate estimation and removal of the instrumental biases using several techniques
 - A simple technique (setting the minimum value of TEC at night)
 - A least squares approach (minimizing the variance of the vertical-equivalent TEC)
 - Kalman filter estimation of total TEC
- Discuss the influence of ionospheric structure on the GPS TEC
- Discuss the influence of the plasmasphere on the GPS TEC
 - A model for the plasmaspheric contribution to the total TEC
 - Kalman filter estimation of ionospheric and plasmaspheric TEC
- Concluding remarks
The GPS Observables and TEC
The Pseudorange Observation Equations:

\[P_1 = \rho + c(\Delta t_r - \Delta t_s) + I_1 + T + b_{1r}^p + b_{1s}^p + m_1^p + \varepsilon_1^p \]
\[P_2 = \rho + c(\Delta t_r - \Delta t_s) + I_2 + T + b_{2r}^p + b_{2s}^p + m_2^p + \varepsilon_2^p \]

Symbols:
- \(P \) – Pseudorange (m)
- \(\rho \) – Geometric range (m)
- \(I \) – Ionospheric delay (m)
- \(T \) – Tropospheric delay (m)
- \(b \) – Instrumental bias for receiver and satellite
- \(\Delta t_r \) – Receiver clock error (s)
- \(\Delta t_s \) – Satellite clock error (s)
- \(m^p \) – Multipath (m)
- \(\varepsilon^p \) – thermal noise (m)

For each signal broadcast:
1 – L1 (1575.42 \(\times \) 10^6 Hz)
2 – L2 (1227.6 \(\times \) 10^6 Hz)

Forming the difference \(P_2 - P_1 \) and neglecting multipath and thermal noise gives:

\[P_2 - P_1 = I_2 - I_1 + (b_{2r}^p - b_{1r}^p) + (b_{2s}^p - b_{1s}^p) \]
\[= I_2 - I_1 + b_r^p + b_s^p \]

(The geometric range, clock error, & tropospheric delay cancel)
The Carrier-Phase Observation Equations:

\[\Phi_1 = \rho + c(\Delta t_r - \Delta t_s) + I_1 + T + b_{1r}^\Phi + b_{1s}^\Phi + \lambda_1 N_1 + m_1^\Phi + \varepsilon_1^\Phi \]

\[\Phi_2 = \rho + c(\Delta t_r - \Delta t_s) + I_2 + T + b_{2r}^\Phi + b_{2s}^\Phi + \lambda_2 N_2 + m_2^\Phi + \varepsilon_2^\Phi \]

Symbols:
- \(\Phi \) – Carrier-phase (m)
- \(\rho \) – Geometric range (m)
- \(I \) – Ionospheric delay (m)
- \(T \) – Tropospheric delay (m)
- \(b \) – Instrumental bias for receiver and satellite
- \(\Delta t_r \) – Receiver clock error (s)
- \(\Delta t_s \) – Satellite clock error (s)
- \(\lambda \) – Wavelength (m)
- \(N \) – Phase cycle-ambiguity
- \(m^\Phi \) – Multipath (m)
- \(\varepsilon^\Phi \) – thermal noise (m)

For each signal broadcast:
1 – L1 \((1575.42 \times 10^6 \text{ Hz})\)
2 – L2 \((1227.6 \times 10^6 \text{ Hz})\)

Forming the difference \(P2-P1 \) and neglecting multipath and thermal noise gives:

\[\Phi_1 - \Phi_2 = I_1 - I_2 + (b_{1r}^\Phi - b_{2r}^\Phi) + (b_{1s}^\Phi - b_{2s}^\Phi) + (\lambda_1 N_1 - \lambda_2 N_2) \]

\[= I_1 - I_2 + b_{1r}^\Phi + b_{1s}^\Phi + (\lambda_1 N_1 - \lambda_2 N_2) \]

(The geometric range, clock error, & tropospheric delay cancel)
Derivation of the Pseudorange TEC Observable

Ionospheric delay:

\[I_f = \frac{40.30}{f^2} TEC \]

where

- \(f \) – Signal frequency (Hz)
- \(I_f \) – Ionospheric delay (m)
- \(TEC \) – total electron content (e\(^{-}/m^2\))

Substituting ionospheric delay into the pseudorange observation equation gives:

\[P_2 - P_1 = I_2 - I_1 + b^p_r + b^p_s = 40.30 \left(\frac{1}{f_2^2} - \frac{1}{f_1^2} \right) TEC + b^p_r + b^p_s \]

Solving this for the TEC yields:

\[TEC = \frac{1}{40.30} \left(\frac{f_1^2 f_2^2}{f_1^2 - f_2^2} \right) \left[(P_2 - P_1) - \left(b^p_r + b^p_s \right) \right] = 9.52 \times 10^{16} \left[(P_2 - P_1) - \left(b^p_r + b^p_s \right) \right] \]

We define the pseudorange TEC without the bias terms in units of TECU:

\[TEC_p = 9.52(P_2 - P_1) \quad \text{where} \quad 1 \text{ TECU} = 10^{16} \text{ e}^{-}/\text{m}^2 \]

unambiguous but noisy and therefore an imprecise observable
Derivation of the Carrier-Phase TEC Observable

Ionospheric phase advance:

\[I_f = \frac{40.30}{f^2} TEC \]

\(f \) – Signal frequency (Hz)
\(I_f \) – Ionospheric delay (m)

TEC – total electron content (e\(^{-}\)/m\(^2\))

Substituting phase advance into the carrier-phase observation equation gives:

\[\Phi_1 - \Phi_2 = I_1 - I_2 + 40.30 \left(\frac{1}{f^2_2} - \frac{1}{f^2_1} \right) TEC + b_r^\Phi + b_s^\Phi + (\lambda_1 N_1 - \lambda_2 N_2) \]

Solving this for the TEC yields:

\[TEC = \frac{1}{40.30} \left[\frac{f^2_1}{f^2_2} \right] \left[(\Phi_1 - \Phi_2) - \left(\frac{b_r^\Phi + b_s^\Phi}{f^2_2} \right) - (\lambda_1 N_1 - \lambda_2 N_2) \right] \]

\[= 9.52 \times 10^{16} \left[(\Phi_1 - \Phi_2) - \left(\frac{b_r^\Phi + b_s^\Phi}{f^2_2} \right) - (\lambda_1 N_1 - \lambda_2 N_2) \right] \]

We define the carrier phase TEC in units of TECU:

\[TEC_\Phi = 9.52 (\Phi_1 - \Phi_2) \quad \text{where} \quad 1 \text{ TECU} = 10^{16} \text{ e}^{-/\text{m}^2} \]

Precise but ambiguous observable. Biases and ambiguities will be estimated using pseudoranges.
Behavior of the Pseudorange and Carrier-Phase Measures of TEC

Ancon, Peru

- PRN 24
- Spread due to multipath & thermal noise
- Cycle slip

$\varepsilon < 20^\circ$

$\varepsilon \geq 20^\circ$

$\varepsilon < 20^\circ$
Measurement of Cycle Slips Using Least Squares

Approximate TECₜₕ as a superposition of a quadratic polynomial and a Heaviside step function at the slip location

\[\sum_{j} v_{i} t_{j} = TEC_{i}^{j} \]

Basis vectors:

\[V_{1}(t) = 1 \]
\[V_{2}(t) = t \]
\[V_{3}(t) = t^2 \]
\[V_{4}(t) = H_{ts}(t) \]

Find solution to this over-determined system via least squares:

\[(V^T V) T = V^T \Phi \]

Solve via singular-value decomposition

Coefficient of the Heaviside step function \(V_{4} \) is the size of the slip

A cycle slip in TECₜₕ

TECₜₕ (dots)
Least-squares fit (open circles)

Slip not corrected if \(\chi^2 > 1 \) TECU

Advantage over predictor methods – uses data on both sides of slip, can de-weight (or omit) data immediately surrounding the slip, if noisy
Carrier-Phase TEC Corrected for Cycle-Slips

Ancon, Peru

PRN 24

ε < 20°

ε ≥ 20°

ε < 20°

post-slip gap
(very common)

TEC_P

TEC_Φ
Leveling the Carrier-Phase TEC to the Pseudorange TEC

Relative TEC (leveled phases):

\[
TEC_R = TEC_\phi + \left(TEC_p - TEC_\phi \right)_{\text{arc}}
\]

Offset

Take difference between pseudorange TEC and phase TEC

\[
x_i = TEC_p^i - TEC_\phi^i
\]

Weighted average of \(x\) gives the offset:

\[
Offset = \frac{\sum w_i x_i}{\sum w_i}
\]

Summation is taken over all samples \((i)\) in the same phase connected arc with \(\varepsilon_i > 20^\circ\)

Weighted standard deviation, \(\sigma\), provides estimate of the leveling error:

\[
\sigma^2 = \frac{\left[\sum w_i x_i^2 \right] \sum w_i - \left[\sum w_i x_i \right]^2}{\left[\sum w_i \right]^2 - \sum w_i^2}
\]

Weighting chosen is usually the sine of the satellite elevation, \(\varepsilon\):

\[
w_i = \sin(\varepsilon_i)
\]

Quality control: entire phase connected arc is discarded if \(\sigma > 5\) TECU
Relative TEC and the Estimated Phase Leveling Error

Only samples with $\varepsilon \geq 20^\circ$ used. Arcs with $\sigma \geq 5$ discarded.

$$\text{TEC}_R = \text{TEC}_p + <\text{TEC}_p - \text{TEC}_\Phi>_{\text{arc}}$$

Offset = 52.8
The Calibrated (Unbiased) Slant TEC

Once the instrumental biases are known, they can be subtracted from relative TEC measurements to give the calibrated (unbiased) slant TEC.

\[\varepsilon < 20^\circ \]

\[\varepsilon \geq 20^\circ \]

\[\text{TEC}_S \equiv \text{TEC}_R - b_S - b_R \]

Ancon, Peru

\[b_S = 12.9, \quad b_R = 33.8 \]

06/23/06
Estimation and Removal of the GPS Instrumental Biases
To estimate the instrumental biases from the measurements themselves, we must make assumptions about the (real) TEC we are trying to measure:

TEC must be non-negative
- and -

The structure of the TEC is assumed to satisfy one or more of these ...
- We assume a value for the TEC attained at night
- Spatial gradients in TEC assumed negligible (at night)
- TEC well approximated by a polynomial of order N (higher order derivatives assumed negligible)
- TEC in the ionosphere well approximated by a polynomial and TEC in the plasmasphere by a model (generally structured according to dipole field-lines)

These techniques work by exploiting the fact that slant TEC depends on elevation (since the path length through ionized region is longer) while the biases do not
The standard geometric mapping function, M, is the projection of slant distance onto zenith distance at the IPP:

$$M \equiv s / d = \sec(\eta)$$

The zenith angle at the IPP, η, can be expressed in terms of shell height, h, and Earth radius R:

$$(R_e + h)\sin(\eta) = R_e \sin(90^\circ + \varepsilon) = R_e \cos(\varepsilon)$$

This gives the mapping function in terms of the satellite elevation, ε:

$$M(\varepsilon) = \sec\left[\sin^{-1}\left(\frac{R_e}{R_e + h} \cos(\varepsilon) \right) \right]$$

Application of mapping function to slant TEC gives the vertical-equivalent TEC:

$$TEC_v = TEC_s / M(\varepsilon)$$
Characteristics of well-calibrated TEC:

- TEC is non-negative
- TEC curves collapse well (especially at night and during post-sunrise ramp up)

There are noteworthy Exceptions to this rule!
Removing the Correct GPS Satellite Biases

The technique used by the receiver to measure TEC_p dictates the type of satellite instrumental biases that must be removed.

<table>
<thead>
<tr>
<th>Receiver Model</th>
<th>Method used to measure the DPR</th>
<th>Type of Satellite Bias to Remove</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ashtech Z-12</td>
<td>L2(P2) - L1(P1)</td>
<td>P1P2 bias</td>
</tr>
<tr>
<td>Ashtech µZ-CGRS</td>
<td>L2(P2) - L1(P1)</td>
<td>P1P2 bias</td>
</tr>
<tr>
<td>NovAtel GSV 4004B</td>
<td>L2(P2) - L1(CA)</td>
<td>P1P2 bias minus the P1C1 bias</td>
</tr>
</tbody>
</table>

Files containing monthly estimates for the P1P2 and P1C1 biases can be downloaded from http://www.aiub.unibe.ch/download/CODE/.

These satellite differential codes bias are not absolute timing biases, instead they average to zero. The unknown offset is immaterial in that it will be lumped together and removed along with the receiver bias.
A Very Simple Technique for Approximate TEC Calibration

Procedure:

- Assume the minimum TEC (generally attained during nighttime) is known, e.g. zero

- Download estimates of the satellite biases from CODE. Multiply the biases by -2.85 TECU/ns to convert the reported biases from units of nanoseconds to TECU.

- Select the receiver bias to enforce that min(TECS) = TEC*:

 \[b_R = \text{min}(\text{TEC}_R) + b_S - \text{TEC}^* \]

- Compute the calibrated slant TEC:

 \[\text{TEC}_S = \text{TEC}_R - b_S - b_R \]
A Better Technique for TEC Calibration
(Performed Manually for Illustration)

Procedure:

• If ionosphere is uniformly distributed in a thin slab (no spatial gradients) then the vertical-equivalent TEC estimates should the same for all satellites.

• Download estimates of the satellite biases from CODE. Multiply the biases by -2.85 TECU/ns to convert the reported biases from units of nanoseconds to TECU.

• Manually change the assumed value of the receiver bias until the vertical-equivalent curves collapse most closely together (at least during nighttime hours)
Assumed receiver bias is too low
Vertical-Equivalent TEC (Satellite Biases Removed, \(b_R = 0 \) TECU)

Assumed receiver bias is too low
Vertical-Equivalent TEC (Satellite Biases Removed, $b_R = 10$ TECU)

Assumed receiver bias is too low
Vertical-Equivalent TEC (Satellite Biases Removed, $b_R = 20$ TECU)

Assumed receiver bias is approximately correct
Assumed receiver bias is too high
Vertical-Equivalent TEC (Satellite Biases Removed, $b_R = 40$ TECU)

Assumed receiver bias is too high
Vertical-Equivalent TEC (Satellite Biases Removed, $b_R = 50$ TECU)

Assumed receiver bias is too high
Assumption: In absence of spatio-temporal density gradients, the verticalized calibrated TEC measured by all satellites should be the same.

Given the satellite biases and h, TEC_V can be expressed as a function of b_R:

$$\text{TEC}_V(b_R) = \frac{[\text{TEC}_R - b_R + b_S]}{M(\varepsilon, h)}$$

Single layer mapping function

We calculate the b_R that minimizes $\text{Var}(\text{TEC}_V)$ late at night when gradients are smallest.
Final calibrated TEC result, using estimated value of 22.3 TECU for receiver bias
Variability of the Receiver Bias Estimates at Antofagasta

Largest deviations from trend occur when TEC is structured late at night.

These nights often correlate with the occurrence of scintillation.

A closer look at two outliers:
Variability of the Bias Estimates at Kwajalein

This station (Kwajalein) experienced weaker GPS scintillations than Antofagasta in 2005.

Deviations in the receiver bias from the trend are correspondingly smaller.

Less structure at night generally means more accurate TEC calibration.
Kalman Filter Estimation of Total TEC
Observation equation (for the i^{th} GPS receiver-satellite pair):

$$TEC_{RS}^i = M\left(\varepsilon_{RS}^i\right)\left[a_{0,R}^i + a_{1,R}^i \cdot d\lambda_{RS}^i + a_{2,R}^i \cdot d\varphi_{RS}^i\right] + b_R^i + b_S^i$$

- ε — Elevation
- α — Azimuth
- $d\lambda$ — Difference between MLT at ionospheric penetration point and station
- $d\varphi$ — Difference between MLAT at ionospheric penetration point and station
- b_R, b_S — Receiver and satellite instrumental biases

Thin shell mapping function

$$M(\varepsilon) = \sec\left[\arcsin\left(\frac{R_e}{R_e + h}\right)\cos(\varepsilon)\right]$$
The Kalman Filter Implementation

Kalman state vector (unknowns)

\[X_k = \begin{bmatrix} a_{0,R}^k & a_{1,R}^k & a_{2,R}^k & b_R^k & b_{S_1}^k & b_{S_2}^k & \cdots & b_{S_N}^k \end{bmatrix}^T \]

- Ionospheric fit parameters
- Instrumental biases

Measurement vector (knowns)

\[y_k = \begin{bmatrix} TEC_{RS_1}^k & TEC_{RS_2}^k & \cdots & TEC_{RS_N}^k \end{bmatrix}^T \]

- Measured slant TEC

Kalman process to be estimated

\[X_k = \Phi_{k,k-1} \cdot X_{k-1} + w_{k-1} \]
\[y_k = H_k \cdot X_k + v_k \]

- Identity state transition matrix
- Zero-mean white Gaussian process noise \(w_k \) and measurement noise \(v_k \)
- Kalman updates performed every 60 seconds (each new data epoch)
Kalman Filter Estimation of TEC in both the Ionosphere and Plasmasphere
• Gradients from the plasmasphere cause an apparent “spread” in the vertical-equivalent TEC which violates our assumption that spatial gradients are small.

• Moreover, the thin-shell approximation commonly used for the ionosphere is not a suitable representation for the plasmaspheric contribution to the TEC.

• This effect is most evident during periods of very low solar activity such the one we are currently experiencing.
Plasmaspheric contribution to the TEC depends on location, azimuth, and elevation.

Plasmapause location has strong influence on PTEC encountered at high to mid latitudes.
Carpenter and Anderson [1992] model for the electron density in the inner plasmasphere:

\[
\log n_e^i = -0.3145L + 3.9043 + \left[0.15 \cos \frac{2\pi (d + 9)}{365} - 0.075 \cos \frac{4\pi (d + 9)}{365} + 0.00127R - 0.0635 \right] e^{\frac{(L-2)}{1.5}}
\]

Location of the plasmapause:

\[
L_p = 5.6 - 0.46Kp_{\max}
\]

Width of the plasmapause (Gallagher et al. [2000]), neglecting local time dependence:

\[
L_w = 0.14
\]

Electron density in the trough (Sheeley et al. [2001]) neglecting local time dependence:

\[
n_e^i = 124(3/L)^4
\]

Regions spliced together using tanh step function

Integration of electron density from 700 km to 20,200 km along signal path gives \(P(\alpha, \varepsilon) \)

Model very simple, but Kalman filter will scale the results to best fit the measurements
A Numerical Experiment: Idealized Ionosphere Plus Plasmasphere

Assume ionosphere is an idealized thin slab

Construct slant TEC via thin-shell mapping fn

Add slant TEC through model plasmasphere

Verticalize the results
Comparing the Idealized and Estimated Total TEC

TEC When Neglecting Plasmasphere

Vertical TEC

UT (hours)

NCA 11/17/2007

MLT (hours)

TECU

Idealized Ionosphere and Plasmasphere

Vertical TEC

UT (hours)

NCA 11/17/2007

MLT (hours)

TECU

MLAT

0 10 20 30 40 50 60 70

0 10 20 30 40 50 60 70

0 5 10 15

0 5 10 15

Slide 40
Observation equation (for the i^{th} GPS receiver-satellite pair):

$$TEC_{RS}^i = M(\varepsilon_{RS}^i)\left[a_{0,R}^i + a_{1,R}^i \cdot d\lambda_{RS}^i + a_{2,R}^i \cdot d\varphi_{RS}^i \right] + a_{3,R}^i \cdot P(\alpha_{RS}^i, \varepsilon_{RS}^i) + b_R^i + b_S^i$$

- ε — Elevation
- α — Azimuth
- $d\lambda$ — Difference between MLT at ionospheric penetration point and station
- $d\varphi$ — Difference between MLAT at ionospheric penetration point and station
- $P(\alpha, \varepsilon)$ — PTEC from Carpenter-Anderson et. al [1992] (scaled to fit observations)
- b_R, b_S — Receiver and satellite instrumental biases

Thin shell mapping function (for the ionosphere only)

$$M(\varepsilon) = \sec\left[\arcsin\left(\frac{R_e}{R_e + h} \right) \cos(\varepsilon) \right]$$
Kalman Filter Implementation (with Plasmasphere)

Kalman state vector (unknowns)

$$X_k = \begin{bmatrix} a_{0,R}^k & a_{1,R}^k & a_{2,R}^k & a_{3,R}^k & b_R^k & b_{S_1}^k & b_{S_2}^k & \cdots & b_{S_N}^k \end{bmatrix}^T$$

Measurement vector (knowns)

$$y_k = \begin{bmatrix} TEC_{RS_1}^k & TEC_{RS_2}^k & \cdots & TEC_{RS_N}^k \end{bmatrix}^T$$

Kalman process to be estimated

$$X_k = \Phi_{k,k-1} \cdot X_{k-1} + w_{k-1}$$

$$y_k = H_k \cdot X_k + v_k$$

- Identity state transition matrix
- Zero-mean white Gaussian process noise w_k and measurement noise v_k
- Kalman updates performed every 60 seconds (each new data epoch)
Results at Greensboro (36°, 280°) on 17-19 Nov 2007

Total Slant TEC

Vertical-Equiv. Total TEC

Ionospheric Slant TEC

Vertical-Equiv. Ionospheric TEC

Plasmaspheric Slant TEC

Zenith Plasmaspheric TEC

Combined Satellite + RX Biases

Zenith Total and Ionospheric TEC

MLT (hours)
Neglecting the plasmasphere tends to cause overestimation of the total TEC at middle latitudes and underestimation at equatorial latitudes.
Why the Estimated TEC Can Be Negative and What to Do About It

When this happens, we fall back on the simple approach: choose the bias to enforce that $\min(\text{TECS}) = \text{TEC}^*$

Now, however, we can make a more informed selection of TEC^*. A reasonable value to use is the (zenith) plasmaspheric contribution according to the Carpenter-Anderson model.
Plasmaspheric Contribution to the GPS TEC
According to the Carpenter-Anderson Plasmasphere Model

Simulation conditions: 13 month average solar flux = 7.9; Kp=1; Day of year = 1

Local max due to offset dipole
Conclusions

• When estimating the GPS instrumental biases from the measurements we must make various assumptions about the structure of the ionized regions traversed by the signals.

• Inaccuracies in estimation of the biases can be expected when these assumptions are violated. Phenomena that cause difficulty in estimating the biases include:
 – Ionospheric structure and scintillation
 – The contribution to the GPS TEC from the plasmasphere

• Neglecting the plasmasphere tends to cause overestimation of the total TEC at middle latitudes and underestimation at equatorial latitudes.

• Software to perform the calibrations using the Kalman filter approach (with and without the plasmasphere term) is available upon request. We will demonstrate this software during Wednesday’s TEC calibration laboratory.

• A manuscript (draft) recently submitted to Radio Science describing the technique is also available upon request.