I. Random variables and their distributions; continuous random variables.

A random variable (r.v) X is continuous if its distribution is given by a probability density function (pdf) $f(x)$ that is positive on an interval. For real numbers $a < b$,

$$ P(a < X < b) = \int_a^b f(x) \, dx. $$

Random variables X and Y are jointly continuous if there’s a joint density function $f(x,y)$ such that

$$ P(a < X < b, c < Y < d) = \int_a^b \int_c^d f(x,y) \, dy \, dx. $$

The marginal density for X is found by integrating out the y and vice-versa for Y. X and Y are called independent if their joint density is the product of their marginals. In this case, it follows that $P(a < X < b, c < Y < d) = P(a < X < b)P(c < Y < d)$.

The cumulative distribution function (cdf) of X is the function F,

$$ F(x) = P(X \leq x) = \int_{-\infty}^x f(t) \, dt. $$

Given a function $g()$, the expected value of $g(X)$ =

$$ E(g(X)) = \int_{-\infty}^\infty g(x) f(x) \, dx. $$
In particular, the mean of $X = E(X) = \mu$; the variance of $X = V(X) = \sigma^2 = E(X - \mu)^2 = EX^2 - \mu^2$; and the standard deviation $\sigma = \sqrt{\sigma^2}$.

The moment generating function of X is

$$M_X(t) = E(e^{Xt}) = \int_{-\infty}^{\infty} e^{xt} f(x) dx.$$

Properties of the moment generating function:

(1) $M_X^{(n)}(0) = \frac{d^n}{dt^n} M_X(t)$, evaluated at $t=0 = E X^n$.

(2) If X_1, X_2, \ldots, X_n are independent random variables then

$$M_{X_1 + X_2 + \ldots + X_n}(t) = M_{X_1}(t) * M_{X_2}(t) * \cdots * M_{X_n}(t).$$

(3) The m.g.f. specifies the distribution: if $M_X(t) = M_Y(t)$, then X and Y have the same distribution.

(4) $M_{aX+b}(t) = e^{bt} M_X(at)$.

The standard class of continuous distributions.

(1) $X \sim N(\mu, \sigma^2)$

density: $f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}$, $-\infty < x < \infty$.

mean: $E(X) = \mu$.

variance: $V(X) = \sigma^2$.

mgf: $M(t) = e^{\mu + \sigma^2 t^2/2}$.

If $X \sim N(\mu, \sigma^2)$, then $(X - \mu)/\sigma \sim N(0, 1)$.

If $X \sim N(\mu_X, \sigma^2_X)$ and $Y \sim N(\mu_Y, \sigma^2_Y)$ are independent, then $aX + bY \sim N(a\mu_X + b\mu_Y, a^2\sigma^2_X + b^2\sigma^2_Y)$.

(2) $X \sim \text{Chi-Square with n degrees of freedom (} X \sim \chi^2(n))$ if $X \sim \text{Gamma}(n/2, 1/2)$.

mean: $E(X) = n$.

variance: $V(X) = 2n$.

mgf: $M(t) = (\frac{1}{1-2t})^{n/2}, t < 1/2$.

(3) $X \sim \text{Exponential(} \lambda)$.

density: $f(x) = \lambda e^{-\lambda x}, x \geq 0$.

mean: $E(X) = 1/\lambda$.

3
variance: $V(X) = 1/\lambda^2$.

mgf: $M(t) = (\frac{\lambda}{\lambda-t})^t, t < \lambda.$

$P(X > x) = e^{-\lambda x},$ for $x > 0.$

Note: There are 2 common conventions followed for the Exponential(λ): (i) λ is the parameter in the density as above and the mean is $1/\lambda,$ and (ii) λ is the mean and the density is $f(x) = (1/\lambda)e^{-x/\lambda};$ the interpretation in a particular problem should be clear from context.

(4) $X \sim \Gamma(a, \lambda).$

density: $f(x) = \frac{\lambda^a}{\Gamma(a)} x^{a-1} e^{-\lambda x}, x \geq 0.$

mean: $E(X) = a/\lambda.$

variance: $V(X) = a/\lambda^2.$

mgf: $M(t) = (\frac{\lambda}{\lambda-t})^a, t < \lambda.$

Note: $\Gamma(n) = \int_0^\infty t^{n-1} e^{-t} dt.$ $\Gamma(n) = (n-1)!$ when n is a positive integer.

When $X_1, X_2, \ldots, X_n \sim \Gamma(\lambda)$ are independent, $X_1 + X_2 + \cdots + X_n \sim \Gamma(n, \lambda).$ In particular, $\Gamma(1, \lambda) = \Gamma(1) = 1.$
(5) $X \sim U[a, b]$

density: $f(x) = 1/(b - a)$ for $a < x < b$.

mean: $E(X) = (a + b)/2$.

variance: $V(X) = (b - a)^2/12$.

mgf: $M(t) = \frac{e^{bt} - e^{at}}{(b-a)t}, -\infty < t < \infty$.

If $[c,d] \subset [a,b]$, then $P(c \leq X \leq d) = \text{Length}[c,d]/\text{Length}[a,b]$.

II. Random variables and their distributions; discrete random variables.

A discrete rv X takes on a finite or countable number of values. Probabilities are computed using a frequency function $p(k) = P(X = k)$; this is also called a probability density function (pdf) or probability mass function.

$$P(a < X < b) = \sum_{k \in (a,b)} p(k).$$
Given a function g, the expected value of $g(X) =$

$$E(g(X)) = \sum_k g(k)p(k);$$

in particular, the moment generating function of X is

$$M_X(t) = E(e^{Xt}) = \sum_k e^{kt}p(k).$$

The standard class of discrete distributions.

(1) $X \sim \text{Bernoulli}(p)$

frequency function: $p(1) = p, p(0) = q = 1 - p$.

mean: $E(X) = p$.

variance: $V(X) = pq$.

mgf: $M(t) = (q + pe^t), -\infty < t < \infty$.

(2) $X \sim \text{Binomial}(n, p)$

frequency function: $p(k) = \binom{n}{k} p^k q^{n-k}, k = 0, 1, \ldots, n.$
mean: $E(X) = np$.

variance: $V(X) = npq$.

mgf: $M(t) = (q + pe^t)^n, -\infty < t < \infty$.

If X is the number of successes in n independent Bernoulli trials, then $X \sim \text{Binomial}(n, p)$.

(3) $X \sim \text{Geometric}(p)$. There are two definitions for the Geometric(p) distribution. (I) X is the number of failures required to see the first success in a sequence of Bernoulli trials and (II) X is the number of trials required to see the first success in a sequence of Bernoulli trials. If X and Y represent have these respective distributions, then $Y = X + 1$. We give results separately for the two definitions.

Case I.

frequency function: $p(k) = pq^k, k = 0, 1, \ldots$, where $q = 1 - p$.

mean: $E(X) = q/p$.

variance: $V(X) = q/p^2$.

mgf: $M(t) = \frac{p}{1-qt}, -\infty < t < \ln(1/q)$.

7
Case II.

frequency function: \(p(k) = pq^{k-1}, k = 1, 2, \ldots \), where \(q = 1 - p \).

mean: \(E(X) = 1/p \).

variance: \(V(X) = q/p^2 \).

mgf: \(M(t) = \frac{pe^t}{1-qt}, -\infty < t < \ln(1/q) \).

(4) \(X \sim \text{Negative Binomial}(r, p) \). Again, there are two definitions for the Negative Binomial\((r, p)\) distribution. (I) \(X \) is the number of failures before the \(r \)th success in a sequence of Bernoulli trials and (II) \(Y \) is the number of trials required to see the \(r \)th success in a sequence of Bernoulli trials. If \(X \) and \(Y \) have these respective distributions, then \(Y = X + r \). We give results separately for the two definitions.

Case I.

frequency function: \(p_X(k) = \binom{k+r-1}{r-1} p^r q^k, k = 0, 1, \ldots \), where \(q = 1 - p \).

mean: \(E(X) = rq/p \).

variance: \(V(X) = rq/p^2 \).
mgf: \(M(t) = (\frac{p}{1-qe^{-t}})^r, -\infty < t < \ln(1/q). \)

Case II.

frequency function: \(p_Y(k) = \binom{k-1}{r-1} p^r q^{k-r}, k = r, r+1, \ldots \), where \(q = 1 - p. \)

mean: \(E(X) = r/p. \)

variance: \(V(X) = rq/p^2. \)

mgf: \(M(t) = (\frac{pe^{-t}}{1-qe^{-t}})^r, -\infty < t < \ln(1/q). \)

\[(5) \, X \sim \text{Poisson}(\lambda) \]

frequency function: \(p(k) = \frac{e^{-\lambda}\lambda^k}{k!}, k = 0, 1, \ldots \)

mean: \(E(X) = \lambda. \)

variance: \(V(X) = \lambda. \)

mgf: \(M(t) = e^{\lambda(e^t-1)}, -\infty < t < \infty. \)
III. General Properties.

\[E(X) \]

\[E(aX + bY) = aE(X) + bE(Y) \] for any random variables \(X \) and \(Y \).

\[E(XY) = E(X)E(Y) \] if \(X \) and \(Y \) are independent.

\[V(X) \] and \(Cov(X, Y) \)

\[V(X) = E[(X - \mu)^2] = E(X^2) - \mu^2. \]

\[V(aX + b) = a^2V(X). \]

\[V(X + Y) = V(X) + V(Y) + 2Cov(X, Y) \] for any random variables \(X \) and \(Y \).

\[V(X + Y) = V(X) + V(Y) \] if \(X \) and \(Y \) are independent.

\[Cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)] = E(XY) - E(X)E(Y). \]

\[Cov(X, Y) = 0 \] if \(X \) and \(Y \) are independent.
\[\text{Cov}(X, X) = V(X). \]

\[\text{Cov}(aX, bY) = ab\text{Cov}(X, Y). \]

\[\text{Cov}(X + Y, U + V) = \text{Cov}(X, U) + \text{Cov}(X, V) + \text{Cov}(Y, U) + \text{Cov}(Y, V). \]

Sampling

If \(\{X_i\} \) are \(n \) independent, identically distributed random variables with \(E(X_i) = \mu \) and \(V(X_i) = \sigma^2 \) and \(\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \) is the sample mean, then:

\[E(\bar{X}) = \mu \text{ and } V(\bar{X}) = \sigma^2/n. \]

Central limit theorem

If \(\{X_i\} \) are \(n \) independent, identically distributed random variables with \(E(X_i) = \mu \) and \(V(X_i) = \sigma^2 \), then

\[\sum_{i=1}^{n} X_i \text{ approximately } \sim N(n\mu, n\sigma^2) \text{ as } n \to \infty. \]

\(\bar{X} \) approximately \(\sim N(\mu, \sigma^2/n) \) as \(n \to \infty. \)

Joint and conditional distributions
If X and Y have joint pdf $f_{X,Y}(x,y)$, then

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y)dy \text{ or } \sum_{y} f_{X,Y}(x,y);$$

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y)dx \text{ or } \sum_{x} f_{X,Y}(x,y);$$

$$f_{X|Y=y}(x) = f_{X,Y}(x,y)/f_Y(y);$$

$$f_{Y|X=x}(y) = f_{X,Y}(x,y)/f_X(x);$$

$$f_{X,Y}(x,y) = f_X(x)f_Y(y) \text{ if and only if } X \text{ and } Y \text{ are independent.}$$

$$X_{\max}, X_{\min}$$

If $\{X_i\}$ are n independent, identically distributed random variables with pdf $f_X(x)$, then

$$f_{X_{\max}}(x) = nf_X(x)[F_X(x)]^{n-1}$$

$$f_{X_{\min}}(x) = nf_X(x)[1 - F_X(x)]^{n-1}$$