Exercise 1. Consider the function \(h : \mathbb{R} \to \mathbb{R} \) defined by
\[
h(x) = \begin{cases} x & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}
\]
(1) Show that for any \(c \neq 0 \) you can find three sequences \((x_n)_{n \in \mathbb{N}}\) \((y_n)_{n \in \mathbb{N}}\) and \((z_n)_{n \in \mathbb{N}}\) with \(\lim x_n = \lim y_n = \lim z_n = c \) such that \(\lim h(x_n) = 0 \) \(\lim h(y_n) = c \) and the series \((h(z_n)) \) does not converge.

Proof. Let \(c \neq 0 \). For each \(n \in \mathbb{N} \) consider the open interval \(I_n = (c - \frac{1}{n}, c + \frac{1}{n}) \). Since the irrationals and rationals numbers are both dense in \(\mathbb{R} \) there is an irrational number \(x_n \in I_n \) and a rational number \(y_n \in I_n \). We thus get two sequences \((x_n)\) and \((y_n)\) and since \(|x_n - c| < \frac{1}{n} \) we get that \(x_n \to c \) and similarly \(y_n \to c \). Now \(h(x_n) = 0 \) for all \(n \) so \(\lim h(x_n) = 0 \) and \(h(y_n) = y_n \) so \(\lim h(y_n) = \lim y_n = c \). Finally let \(z_n = \begin{cases} x_n & n \text{ is odd} \\ y_n & n \text{ is even} \end{cases} \). Then \(z_n \to c \) as well but \(\lim h(z_n) \) does not exist since it has two subsequences \((h(z_{2n}))\) and \((h(z_{2n+1}))\) converging to different limits. \(\square \)

(2) On the other hand, show that any sequence \((x_n)_{n \in \mathbb{N}}\) with \(\lim x_n = 0 \) satisfies that \(\lim_{n \to \infty} h(x_n) = 0 \).

Proof. Assume that \(x_n \to 0 \). Then for any \(\epsilon > 0 \) there is \(N \in \mathbb{N} \) such that \(|x_n| < \epsilon \) for all \(n > N \). But then \(|h(x_n)| < \epsilon \) for all \(n > N \) (since if \(x_n \) is rational then \(|h(x_n)| = |x_n| < \epsilon \) and if \(x_n \) is irrational then \(|h(x_n)| = 0 < \epsilon \)). \(\square \)

Exercise 2. In each of the following cases prove the following limit formulas directly from the definition

(1) \(\lim_{x \to 2} (2x + 4) = 8 \)
For any \(\epsilon > 0 \) let \(\delta = \frac{\epsilon}{2} \) then if \(|x - 2| < \delta \) then \(|2x + 4 - 8| = |2(x - 2)| < 2\delta = \epsilon. \)

(2) \(\lim_{x \to 0} x^3 = 0 \)
For any \(\epsilon > 0 \) let \(\delta = \epsilon^{1/3} \). Then if \(|x| < \delta \) then \(|x^3 - 0| = |x|^3 < \delta^3 = \epsilon. \)

(3) \(\lim_{x \to 2} x^3 = 8 \)
For any \(\epsilon > 0 \) let \(\delta = \min \{1, \epsilon/12\} \). Using the identity \(x^3 - 8 = (x - 2)(x^2 + 2x + 4) \) and noting that if \(|x - 2| < 1 \) then \(1 < x < 3 \) and \(x^2 + 2x + 4 < 12 \) we get that if \(|x - 2| < \delta \) then \(|x^3 - 8| < 12\delta = \epsilon \).

(4) \(\lim_{x \to \pi} x = 3 \) where the floor function \(\lfloor x \rfloor \) denotes the greatest integer smaller or equal to \(x \) (for example \(\lfloor 2.2 \rfloor = 2 \)).
Recall that \(3.14 < \pi < 3.15 \) in particular, for any \(\epsilon > 0 \) if \(|x - \pi| < \delta = 0.1 \) then \(3.04 < x < 3.05 \) and \(|x| = 3 \) so \(|\lfloor x \rfloor - 3| = 0 < \epsilon \).
Exercise 3. Use the sequential criterion for functional limits to show that following limits do not exist

1. \(\lim_{x \to 0} \frac{|x|}{x} \)
 - Let \(x_n = \frac{1}{n} \) and \(y_n = -\frac{1}{n} \) then \(\lim x_n = \lim y_n = 0 \) but \(\lim \frac{|x_n|}{x_n} = 1 \) and \(\lim \frac{|y_n|}{y_n} = -1 \) so the limit \(\lim_{x \to 0} \frac{|x|}{x} \) does not exist.

2. \(\lim_{x \to 1} h(x) \)
 - This follows from the fact that there is a sequence \(z_n \to 1 \) where \(\lim h(z_n) \) does not exist.

Exercise 4. Let \(f, g : A \to \mathbb{R} \) be two functions and let \(c \in A' \) a limit point of \(A \). Assume that \(f(x) \geq g(x) \) for all \(x \in A \) and that \(\lim_{x \to c} f(x) = L \) and \(\lim_{x \to c} g(x) = M \). Show that \(L \geq M \).

Proof. Let \((x_n) \) be a sequence in \(A \) with \(x_n \not\to c \) and \(\lim x_n = c \). Then \(\lim f(x_n) = L \) and \(\lim g(x_n) = M \). Since \(f(x_n) \geq g(x_n) \) for all \(n \) we get that \(L \geq M \). \(\square \)

Exercise 5. Let \(f, g : A \to \mathbb{R} \) be two functions and let \(c \in A' \) a limit point of \(A \). Assume that \(f(x) \) is bounded, that is, that there is some \(M > 0 \) with \(|f(x)| \leq M \) for all \(x \in A \). Show that if \(\lim_{x \to c} g(x) = 0 \) then \(\lim_{x \to c} (f(x)g(x)) = 0 \) as well.

Proof. For any \(\epsilon > 0 \) let \(\delta > 0 \) be such that if \(|x - c| < \delta \) then \(|g(x)| < \epsilon/M \). Then if \(|x - c| < \delta \) then \(|f(x)g(x) - 0| \leq M|g(x)| < \epsilon \). \(\square \)

Exercise 6 (Challenge question). Consider the function \(t : \mathbb{R} \to \mathbb{R} \) defined by

\[
t(x) = \begin{cases}
1 & x = 0 \\
\frac{1}{q} & x = \frac{p}{q} \text{ with } p \in \mathbb{Z}, \ q \in \mathbb{N} \text{ in lowest terms} \\
0 & x \not\in \mathbb{Q}
\end{cases}
\]

You will now prove that for any \(x \in \mathbb{R} \) one has \(\lim_{x \to c} t(x) = 0 \).

1. For any \(M > 0 \) let
 \[
 \{ Q_M = \{ \frac{p}{q} : 0 < q < M \text{ and } |p| < (|c| + 1)q \text{ in lowest terms} \}
 \]
 Show that this set has finitely many elements.

 Proof. Since any \(\frac{p}{q} \) in \(Q_M \) satisfies \(0 < q < M \) and \(|p| < (|c| + 1)q < (|c| + 1)M \) then \(Q_M \) has at most \(M^2(|c| + 1) \) elements. \(\square \)

2. Let \(\delta_1 = \min\{|r - c| : r \in Q_M, \ r \not\in c\} \) and explain why \(\delta_1 > 0 \) must be strictly positive.

 Proof. This is a finite set of positive elements (since \(|r - c| > 0 \) whenever \(r \not\in c \)) so their minimum is positive. \(\square \)
(3) Let $\delta = \min\{\delta_1, 1\}$ and show that if $|x - c| < \delta$ and $x \neq c$ then $|t(x)| < \frac{1}{M}$

Proof. Let $x \in \mathbb{R}$ and assume that $0 < |x - c| < \delta$. If x is irrational then $|t(x)| = 0 < \frac{1}{M}$ so it is enough to consider the case where $x \in \mathbb{Q}$. For $x \in \mathbb{Q}$ write $x = \frac{p}{q}$ with $p \in \mathbb{Z}$ and $q \in \mathbb{N}$ in reduced form. If $q > M$ then $t(q) = \frac{1}{q} < M$ and we are done. We will now show that the assumption $0 < q \leq M$ leads to a contradiction. Indeed since $|\frac{p}{q} - c| < \delta \leq 1$ we have that $|\frac{p}{q}| < |c| + 1$ so if $0 < q < M$ then $\frac{p}{q} \in Q_M$. But this contradicts the bound $|\frac{p}{q} - c| < \delta \leq \delta_1 = \min\{|r - c| : r \in Q_M, r \neq c\}$.\hfill \Box

(4) Show that indeed $\lim_{x \to c} t(x) = 0$ (using the ϵ, δ definition).

Proof. Given $\epsilon > 0$ let $M > 0$ with $\frac{1}{M} < \epsilon$. Let $\delta > 0$ be as above, then if $|x - c| < \delta$ we showed that $|t(x)| < \frac{1}{M} < \epsilon$ so we are done.\hfill \Box

(5) At what points is the function $t(x)$ continuous?

We have that $\lim_{x \to c} t(x) = 0$ at all points so the function is continuous only at points for which $t(x) = 0$, that is it is continuous at all $x \in \mathbb{R} \setminus \mathbb{Q}$.

\[\text{Hint: Consider the cases when } x = \frac{p}{q} \text{ is rational and } x \text{ is irrational separately}\]