MT441 Homework 4

Solution

Exercise 1. Solve the heat equation \(u_t = u_{xx} \) for a rod which is infinite in both directions with initial condition
\[
\phi(x) = \begin{cases}
1 & \text{for } -1 \leq x \leq 1 \\
0 & \text{otherwise.}
\end{cases}
\]
Express your solution in terms of the error function
\[
\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-\xi^2} d\xi.
\]

Solution. Let \(U(t) = U(t, \omega) = \mathcal{F}[u] \), where the Fourier transform is taken with respect to \(x \). Applying \(\mathcal{F} \) to both sides of the equation \(u_t = u_{xx} \) and using Exercise 4, we get
\[
U'(t) = -\omega^2 U(t),
\]
so
\[
U(t) = U(0) e^{-\omega^2 t} = \mathcal{F}[\phi] \cdot e^{-\omega^2 t}.
\]
From the tables (we have seen in class) we have
\[
e^{-\omega^2 t} = \mathcal{F} \left[\frac{1}{\sqrt{2\pi}} e^{-(x^2/4t)} \right],
\]
so
\[
\mathcal{F}[u] = U(t) = \mathcal{F}[\phi] \cdot \mathcal{F} \left[\frac{1}{\sqrt{2\pi}} e^{-(x^2/4t)} \right] = \mathcal{F} \left[\phi * \frac{1}{\sqrt{2\pi}} e^{-(x^2/4t)} \right].
\]
Taking the inverse transform of both sides gives
\[
u(x, t) = \phi(x) * \frac{1}{\sqrt{2\pi}} e^{-(x^2/4t)},
\]
for a general initial condition \(\phi(x) \). For the \(\phi(x) \) given in this problem we compute the solution
\[
u(x, t) = \phi(x) * \frac{1}{\sqrt{2\pi}} e^{-(x^2/4t)} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \phi(\xi) \cdot \frac{1}{\sqrt{2\pi}} e^{-(x-\xi)^2/4t} d\xi = \frac{1}{2\sqrt{\pi t}} \int_{-1}^{1} e^{-(x-\xi)^2/4t} d\xi
\]
\[
= \frac{1}{\sqrt{\pi}} \int_{(x-1)/2\sqrt{t}}^{(x+1)/2\sqrt{t}} e^{-s^2} ds = \frac{1}{2} \left[\text{erf} \left(\frac{x+1}{2\sqrt{t}} \right) - \text{erf} \left(\frac{x-1}{2\sqrt{t}} \right) \right].
\]
As an illustration, the solution \(u(x, t) \) is shown for \(t = .001, .01, 1, 3, 6, 1.0 \), cooling from deep red to light blue. Note how the solution for small \(t \) approximates the initial condition.
Exercise 2. Use the sine or cosine transform to solve the following problem

\[
\begin{align*}
 u_t &= u_{xx} & 0 < x < \infty, & 0 < t < \infty \\
 u_x(0, t) &= 0 & 0 < t < \infty \\
 u(x, 0) &= \begin{cases} 1 & 0 < x < 1 \\ 0 & x > 1 \end{cases}
\end{align*}
\]

Solution. Recall that the sine and cosine transforms \(F_s \) and \(F_c \) satisfy that

\[
\begin{align*}
 F_s[f''] &= \frac{2}{\pi} \omega f(0) - \omega^2 F_s[f], \\
 F_c[f''] &= -\frac{2}{\pi} \omega f'(0) - \omega^2 F_c[f].
\end{align*}
\]

so since our boundary conditions at zero involve \(u_x(0, t) \) we should use the cosine transform.

Now letting

\[
U(\omega, t) = F_c[u] := \frac{2}{\pi} \int_0^\infty u(x, t) \cos(\omega x) \, dx,
\]

and inverting the equation we get

\[
U_t(\omega, t) = -\frac{2}{\pi} \omega u_x(0, t) - \omega^2 U(\omega, t) = -\omega^2 U(\omega, t),
\]

where we used the BC: \(u_x(0, t) = 0 \). We also invert the IC to get:

\[
\begin{align*}
 U(\omega, 0) &= \frac{2}{\pi} \int_0^\infty u(x, 0) \cos(\omega x) \, dx \\
 &= \frac{2}{\pi} \int_0^1 \cos(\omega x) \, dx = \frac{2 \sin(\omega)}{\pi \omega}.
\end{align*}
\]
We now have the ODE for the function $U(\omega, t)$ in the t variable:

\[
U' = -\omega^2 U
U(0) = \frac{2 \sin(\omega)}{\pi \omega},
\]

whose solution is $U(\omega, t) = \frac{2 \sin(\omega)}{\pi \omega} e^{-\omega^2 t}$.

The last step is inverting this transform. The function $\frac{2 \sin(\omega)}{\pi \omega} e^{-\omega^2 t}$ is not in our table of transforms so we need to work a bit. Using the inversion formula we can write

\[
u(x, t) = \int_0^\infty U(\omega, t) \cos(\omega x) d\omega
= \frac{2}{\pi} \int_0^\infty \frac{e^{-\omega^2 t}}{\omega} \sin(\omega) \cos(\omega x) d\omega
= \frac{1}{\pi} \int_0^\infty \frac{e^{-\omega^2 t}}{\omega} (\sin(\omega(1 + x)) + \sin(\omega(1 - x))) d\omega
= \frac{1}{\pi} \int_0^\infty \frac{e^{-\omega^2 t}}{\omega} \sin(\omega(1 + x)) d\omega + \frac{1}{\pi} \int_0^\infty \frac{e^{-\omega^2 t}}{\omega} \sin(\omega(1 - x)) d\omega.
\]

Note that when $x < 1$ the integrals above are the inverse sine transform of $f(x, t) = \mathcal{F}^{-1}_s \left[\frac{e^{-\omega^2 t}}{\omega} \right]$ evaluated at $(1 + x)$ and $(1 - x)$ respectively. When $x > 1$ we replace $\sin(1 - x) = -\sin(x - 1)$ and note that the second integral $-f(x - 1, t)$. We thus get that

\[
u(x, t) = \begin{cases}
\frac{f(1 + x, t) + f(1 - x, t)}{\pi} & x \leq 1 \\
\frac{f(1 + x, t) - f(x - 1, t)}{\pi} & x > 1
\end{cases}.
\]

We now just need to compute $f(x, t)$ by inverting the sine transform $\mathcal{F}^{-1}_s \left[\frac{e^{-\omega^2 t}}{\omega} \right]$ as follows:

\[
f(x, t) = \int_0^\infty \frac{e^{-\omega^2 t}}{\omega} \sin(\omega x) d\omega
= \int_0^\infty \frac{e^{-\omega^2 t}}{\omega} \sin(\omega x) d\omega + \int_0^\infty \frac{\sin(\omega x)}{\omega} d\omega
= \frac{\pi}{2} \left(1 - \text{erfc} \left(\frac{x}{2 \sqrt{t}} \right) \right),
\]

and plugging this in above gives

\[
u(x, t) = \begin{cases}
1 - \frac{1}{2} \left(\text{erfc} \left(\frac{1 + x}{2 \sqrt{t}} \right) + \text{erfc} \left(\frac{1 - x}{2 \sqrt{t}} \right) \right) & x \leq 1 \\
\frac{1}{2} \left(\text{erfc} \left(\frac{x - 1}{2 \sqrt{t}} \right) - \text{erfc} \left(\frac{x + 1}{2 \sqrt{t}} \right) \right) & x > 1
\end{cases}.
\]

The solution $u(x, t)$ is shown for $t = .001, .01, .1, 1$, cooling from deep red to light blue. Note how the solution for small t approximates the initial condition.
Exercise 3. Let $a > 0$ be a positive constant. Use the convolution formula (see eq. (12.9) in the text), along with the integral formula (for constants A, B, C with $A > 0$)

$$
\int_{-\infty}^{\infty} e^{-(Ax^2+2Bx+C)} \, dx = \sqrt{\frac{\pi}{A}} \cdot e^{(B^2-AC)/A}
$$
to solve the initial-value problem

$$
\begin{align*}
&u_t = u_{xx}, \quad u(x, 0) = e^{-(x/a)^2}, \\
&\text{for } -\infty < x < \infty \text{ and } t \geq 0.
\end{align*}
$$

Solution. According to the convolution formula, the solution is given by

$$
u(x, t) = \phi(x) * \left(\frac{1}{\sqrt{2\pi t}} \cdot e^{-(x^2/4t)} \right) = \frac{1}{\sqrt{2\pi t}} \int_{-\infty}^{\infty} \phi(\xi) e^{-(x-\xi)^2/4t} \, d\xi = \frac{1}{2\sqrt{\pi}t} \int_{-\infty}^{\infty} \phi(\xi) e^{-(\xi^2/4t)} \, d\xi
$$

for a general initial condition $\phi(x)$. Taking $\phi(x) = e^{-(x/a)^2}$, we get

$$
u(x, t) = \frac{1}{2\sqrt{\pi t}} \cdot \sqrt{\pi} \cdot \frac{2a\sqrt{t}}{a^2+4t} \cdot e^{-x^2/(a^2+4t)} = \frac{a}{\sqrt{a^2+4t}} \cdot e^{-x^2/(a^2+4t)}.
$$

Exercise 4. Consider the following problem

$$
\begin{align*}
u_t &= u_{xx}, \quad 0 < x < \infty, \quad 0 < t < \infty \\
u(0, t) &= \sin(t), \quad 0 < t < \infty \\
u(x, 0) &= 0, \quad 0 \leq x < \infty
\end{align*}
$$

(a) What is the physical interpretation of this problem?

(b) Use the Laplace transform to solve this problem (consider in which variable x or t you rather apply the transform).

Solution.

(a) The equation describes the temperature of a half infinite rod that has constant temperature zero at time $t = 0$ and the temperature in one end is made to oscillate like $\sin(t)$.

(b) We apply the Laplace transform in the t variable, setting $\mathcal{L}[u] = U(x, s)$ we get the ODE

$$
\begin{align*}
U_{xx} &= sU(x) \\
U(0) &= \frac{1}{s^2+1}
\end{align*}
$$

(where we used that $u(x, 0) = 0$ in the first equation and that $\mathcal{L}[u(0, t)] = \mathcal{L}[\sin(t)] = \frac{1}{1+s^2}$ for the second. The solution to this ODE with these IC is

$$
U(x, s) = \frac{e^{-\sqrt{s}x}}{s^2+1} \frac{s}{s^2+1}.
$$
where we multiplied and divided by s to make it easier to find the inverse transform. From the inversion table we see that $\mathcal{L}^{-1}\left[\frac{s}{s^2 + 1}\right] = \cos(t)$ and $\mathcal{L}^{-1}\left[\frac{e^{-\sqrt{s}}}{s}\right] = \text{erfc}\left(\frac{x}{2\sqrt{t}}\right)$, hence, using the finite convolution

$$u(x, t) = \int_0^t \cos(t - \tau) \text{erfc}\left(\frac{x}{2\sqrt{\tau}}\right) d\tau.$$