86. Llabani E, Hicklin RW, Lee HY, Motika SE, Crawford LA, Weerapana E, Hergenrother PJ. 2019 May 13. doi: 10.1038/s41557-019-0261-6. [Epub ahead of print] PubMed PMID: 31086302. Diverse compounds from pleuromutilin lead to a thioredoxin inhibitor and inducer of ferroptosis. Nat Chem. , 2019, in press.
85. Bak DW, Weerapana E.
Interrogation of Functional Mitochondrial Cysteine Residues by Quantitative Mass Spectrometry. Methods Mol Biol., 2019, 1967, 211-227.
84. Sen S, Mondal S, Zheng L, Salinger AJ, Fast W, Weerapana E, Thompson PR.
Development of a Suicide Inhibition-Based Protein Labeling Strategy for Nicotinamide N-Methyltransferase. ACS Chem Biol., 2019, 14, 613-618.
83. Italia JS, Addy PS, Erickson SB, Peeler JC, Weerapana E, Chatterjee A.
Mutually Orthogonal Nonsense-Suppression Systems and Conjugation Chemistries for Precise Protein Labeling at up to Three Distinct Sites. J Am Chem Soc., 2019, 141, 6204-6212.
82. Maurais AJ, Weerapana E.
Reactive-cysteine profiling for drug discovery. Curr. Opin. Chem. Biol., 2019, 50, 29-36.
81. Kulkarni RA, Bak DW, Wei D, Bergholtz SE, Briney CA, Shrimp JH, Alpsoy A, Thorpe AL, Bavari AE, Crooks DR, Levy M, Florens L, Washburn MP, Frizzell N, Dykhuizen EC, Weerapana E, Linehan WM, Meier JL.
A chemoproteomic portrait of the oncometabolite fumarate. Nat Chem Biol., 2019, 15, 391-400.
80. Long MJC, Lawson AP, Baggio R, Qian Y, Rozhansky L, Fasci D, El Oualid F, Weerapana E, Hedstrom L.
Diarylcarbonates are a new class of deubiquitinating enzyme inhibitor. Bioorg Med Chem Lett., 2019, 29, 204-211.
79. Bak DW, Bechtel TJ, Falco JA, Weerapana E.
Cysteine reactivity across the subcellular universe. Curr Opin Chem Biol., 2019, 48, 96-105.

78. Gao J, Yang F, Che J, Han Y, Wang Y, Chen N, Bak DW, Lai S, Xie X, Weerapana E, Wang C. Selenium-encoded isotopic signature targeted profiling. ACS Cent Sci., 2018, 4, 960-970.
77. Luo W, Guo F, McMahon A, Couvertier S, Jin H, Diaz M, Fieldsend A, Weerapana E, Rosbash M.
NonA and CPX link the circadian clockwork to locomotor activity in drosophila. Neuron, 2018, 99, 768-780.
76. Nemmara VV, Tilvawala R, Salinger AJ, Miller L, Nguyen SH, Weerapana E, Thompson PR.
Citrullination inactivates nicotinamide-N-methyltransferase. ACS Chem. Biol., 2018, 13, 2663–2672.
75. Bak DW, Gao J, Wang C, Weerapana E.
A quantitative chemoproteomic platform to monitor selenocysteine reactivity within a complex proteome. Cell Chem. Biol., 2018, 9, 1157-1167.
74. Lentz CS, Sheldon JR, Crawford LA, Cooper R, Garland M, Amieva MR, Weerapana E, Skaar EP, Bogyo M.
Identification of a S. aureus virulence factor by activity-based protein profiling (ABPP). Nat Chem Biol., 2018, 14, 609–617.
73. Tilvawala R, Nguyen SH, Maurais AJ, Nemmara VV, Nagar M, Salinger AJ, Nagpal S, Weerapana E, Thompson PR.
The rheumatoid arthritis-associated citrullinome. Cell Chem Biol., 2018, 25, 691-704.
72. Cole KS, Grandjean JMD, Chen K, Witt CH, O'Day J, Shoulders MD, Wiseman RL, Weerapana E. Characterization of an A-site selective protein disulfide isomerase A1 inhibitor. Biochemistry., 2018, 57, 2035-2043.
71. Nemmara VJ, Subramanian V, Muth A, Mondal S, Salinger AJ, Maurais AJ, Tilvawala R, Weerapana E, Thompson PR. The development of benzimidazole-based clickable probes for the efficient labeling of cellular protein arginine deiminases (PADs). ACS Chem Biol., 2018, 13, 712-722.
70. Abo M, Li C, Weerapana E. Isotopically-labeled iodoacetamide-alkyne probes for quantitative cysteine-reactivity profiling. Mol Pharm., 2018, 15, 743-749.

69. Gorelenkova Miller O, Cole KS, Emerson CC, Allimuthu D, Golczak M, Stewart PL, Weerapana E, Adams DJ, Mieyal JJ. Novel chloroacetamido compound CWR-J02 is an anti-inflammatory glutaredoxin-1 inhibitor. PLoS One., 2017, 12(11):e0187991.
68. Abo M, Weerapana E. Chemical probes for redox signaling and oxidative stress. Antioxid Redox Signal., 2018, in press.
67. Sun B, Dwivedi1 N, Bechtel TJ, Paulsen JL, Muth A, Bawadekar M, Li G, Thompson PR, Shelef MA, Schiffer CA, Weerapana E, Ho I-C. Citrullination of NF-?B p65 promotes its nuclear localization and TLR-induced expression of IL-1ß and TNFa. Science Immunology, 2017, 2(12) eaal3062.
66. Quinti L, Dayalan Naidu S, Träger U, Chen X, Kegel-Gleason K, Llères D, Connolly C, Chopra V, Low C, Moniot S, Sapp E, Tousley AR, Vodicka P, Van Kanegan MJ, Kaltenbach LS, Crawford LA, Fuszard M, Higgins M, Miller JRC, Farmer RE, Potluri V, Samajdar S, Meisel L, Zhang N, Snyder A, Stein R, Hersch SM, Ellerby LM, Weerapana E, Schwarzschild MA, Steegborn C, Leavitt BR, Degterev A, Tabrizi SJ, Lo DC, DiFiglia M, Thompson LM, Dinkova-Kostova AT, Kazantsev AG. KEAP1-modifying small molecule reveals muted NRF2 signaling responses in neural stem cells from Huntington's disease patients. Proc Natl Acad Sci U S A., 2017, 114(23):E4676-E4685.
65. Lawson AP, Bak DW, Shannon DA, Long MJC, Vijaykumar T, Yu R, El Oualid F, Weerapana E, Hedstrom L. Identification of deubiquitinase targets of isothiocyanates using SILAC-assisted quantitative mass spectrometry. Oncotarget, 2017, 8(31), 51296-51316.
64. Casas-Selves M, Zhang A, Dowling JE, Hallen S, Kawatkar A, Pace NJ, Denz C, Pontz T, Garahdaghi F, Cao Q, Sabirsh A, Thakur K, O'Connell N, Hu J, Cornella-Taracido I, Weerapana E, Zinda M, Goodnow RA. Target deconvolution efforts on Wnt pathway screen reveal dual modulation of oxidative phosphorylation and SERCA2. ChemMedChem, 2017, 12(12):917-924.
63. Child MA, Garland M, Foe I, Madzelan P, Treeck M, van der Linden WA, Oresic Bender K, Weerapana E, Wilson MA, Boothroyd JC, Reese ML, Bogyo M. Toxoplasma DJ-1 regulates organelle secretion by a direct interaction with calcium-dependent protein kinase 1. MBio., 2017, 8, e02189-16.
62. Bak D.W., Pizzagalli M.D., Weerapana E. Identifying functional cysteine residues in the mitochondria. ACS Chem. Biol., 2017, 12, 947-957.
61. Weerapana E. Redox regulation: Taking AKTion on HNEs (News and Views). Nat. Chem. Biol., 2017, 13, 244-245.
60. Bechtel T.J., Weerapana E. From structure to redox: the diverse functional roles of disulfides and implications in disease. (Review) Proteomics, 2017, 17(6). doi: 10.1002/pmic.201600391.
59. Abo M., Bak D.W., Weerapana E. Optimization of caged electrophiles for improved monitoring of cysteine reactivity in living cells. ChemBioChem, 2017, 18, 81-84.
58. Qian Y., Weerapana E. A quantitative mass-spectrometry platform to monitor changes in cysteine reactivity. Methods Mol. Biol., 2017, 1491, 11-22.

57. Martell J., Seo Y., Bak D.W., Kingsley S.F., Tissenbaum H.A., Weerapana E. Global cysteine-reactivity profiling during impaired insulin/IGF-1 signaling in C. elegans identifies uncharacterized mediators of longevity. Cell Chem. Biol., 2016, 23, 955-966.
56. Zhou Y.#, Wynia-Smith S.L.#, Couvertier S.M.#, Kalous K.S., Marletta M.A.*, Smith B.C.*, Weerapana E.* Chemoproteomic strategy to quantitatively monitor transnitrosation uncovers functionally relevant S-nitrosation sites on Cathepsin D and HADH2. Cell Chem. Biol., 2016, 23, 727-737.
55. Samarasinghe K.T., Munkanatta Godage D.N., Zhou Y, Ndombera F.T., Weerapana E., Ahn Y.H. A clickable glutathione approach for identification of protein glutathionylation in response to glucose metabolism. Mol. BioSyst., 2016, 12, 2471-2480.
54. Jones L.H., Weerapana E. Protein Labelling (Editorial Overview). Mol. BioSyst., 2016, 12, 1725-27.
53. Louie S.M., Grossman E.A., Crawford L.A., Ding L., Camarda R., Huffman T.R., Miyamoto D.K., Goga A., Weerapana E., Nomura D.K. GSTP1 is a driver of triple-negative breast cancer cell metabolism and pathogenicity. Cell Chem. Biol., 2016, 23, 567-578.
52. Crawford L.A., Weerapana E. A tyrosine-reactive irreversible inhibitor for glutathione S-transferase Pi (GSTP1). Mol. Biosyst., 2016, 12, 1768-1771.
51. Sanman L.E., Qian Y., Eisele N.A., Ng T.M., van der Linden W.A., Monack D.M., Weerapana E., Bogyo M. Disruption of glycolytic flux is a signal for inflammasome signaling and pyroptotic cell death. Elife, 2016, e13663.
50. Hatzios S.K., Abel S., Martell J., Hubbard T., Sasabe J., Munera D., Clark L., Bachovchin D.A., Qadri F., Ryan E.T., Davis B.M., Weerapana E.*, Waldor M.K.* Chemoproteomic profiling of host and pathogen enzymes active in cholera. Nat. Chem. Biol., 2016, 12, 268-74.
49. Saghatelian A., Nomura D. K., Weerapana E. Omics: The maturation of chemical biology. (Editorial Overview) Curr Opin Chem Biol., 2016, 30, v-vi. Special issue on "Omics".
48. Clancy K.W., Weerapana E., Thompson P.R. Detection and identification of protein citrullination in complex biological systems. (Review) Curr Opin Chem Biol., 2016, 30, 1-6. Special issue on "Omics".

47. Lawson A.P., Long M.J., Coffey R.T., Qian Y., Weerapana E., El Oualid F., Hedstrom L. Naturally occurring isothiocyanates exert anticancer effects by inhibiting deubiquitinating enzymes. Cancer Res., 2015, 75, 5130-42.
46. Lewallen D.M., Bicker K.L., Subramanian V., Clancy K.W., Slade D.J., Martell J., Dreyton C.J., Sokolove J., Weerapana E., Thompson P.R. A chemical proteomic platform to identify citrullinated proteins. ACS Chem Biol., 2015, 10, 2520-8.
45. Abo M., Weerapana E. A caged probe for global analysis of cysteine reactivity in living cells. J. Am. Chem. Soc., 2015, 137, 7087-90.
44. Wei Y., Stec B., Redfield A.G., Weerapana E., Roberts M.F. Phospholipid binding sites of PTEN: Exploring the mechanism of PIP2 activation. J. Biol. Chem., 2015, 290, 1592-606.
43. Bak D.W., Weerapana E. Cysteine-mediated redox signalling in the mitochondria. (Review) Molecular Biosystems, 2015, 11, 678-97.
42. Shannon D.A., Weerapana E. Covalent protein modification: the current landscape of residue-specific electrophiles. (Review) Current Opinion in Chemical Biology, 2015, 24, 18-26. Special issue on "Omics".

41. Couvertier S.M., Zhou Y., Weerapana E. Chemical-proteomic strategies to investigate cysteine posttranslational modifications. (Review) Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2014, 1844, 2315-30.
40. Tamburini, F., Kelly T., Weerapana E.*, Byers J.* Paper to Plastics: An interdisciplinary summer outreach project in sustainability. J. Chem. Ed., 2014, 91, 1574-79.
39. Pace, N. J., Weerapana, E. Zinc-binding cysteines: diverse functions and structural motifs. (Review) Biomolecules, 2014, 4, 419-34. Special issue on "Metal-binding Proteins".
38. Zhuang, J., Kuo, C.H., Chou, L.Y., Liu, D.Y., Weerapana, E.*, Tsung, C.K.* Optimized metal-organic-framework nanospheres for drug delivery: evaluation of small-molecule encapsulation. ACS Nano, 2014, 8, 2812-9.
37. Shannon, D.A., Banerjee, R., Webster, E.R., Bak, D.W., Wang, C., Weerapana, E. Investigating the proteome reactivity and selectivity of aryl halides J. Am. Chem. Soc., 2014, 136, 3330-3.
36. Martell, J., Weerapana, E. Applications of copper-catalyzed click chemistry in activity-based protein profiling. (Review) Molecules, 2014, 19, 1378-93. Special Issue on "Bioorthogonal Chemistry"
35. Wang, C., Weerapana, E., Blewett, M.M., Cravatt, B.F. A chemoproteomic platform to quantitatively map targets of lipid-derived electrophiles. Nature Methods, 2014, 11, 79-85.
34. Couvertier, S. M., Weerapana, E. Cysteine-reactive chemical probes based on a modular 4-amino-piperidine scaffold. MedChemComm, 2014, 5, 358-62.
33. Pace, N.J., Weerapana, E. A competitive chemical-proteomic platform to identify zinc-binding cysteines. ACS Chemical Biology, 2014, 9, 651-6.
32. Shannon D.A., Weerapana, E. Orphan PTMs: Rare, yet functionally important modifications of cysteine. (Review) Biopolymers, 2014, 101, 156-64. Special issue on “The Next Frontier of Posttranslational Modifications

31. Schwaid, A.G.#, Shannon, D.A.#, Ma, J., Slavoff, S.A., Levin, J.Z., Weerapana, E.*, Saghatelian, A.* Chemoproteomic discovery of cysteine-containing human short open reading frames. J. Am. Chem. Soc., 2013, 135, 16750-3.
30. Child, M.A., Hall C.I., Beck, J.R., Ofori, L.O., Albrow,V.E., Garland, M., Bowyer, P.W., Bradley,P.J., Powers, J.C., Boothroyd, J.C., Weerapana, E., Bogyo, M. Small-molecule inhibition of a depalmitoylase enhances Toxoplasma host-cell invasion. Nat. Chem. Biol., 2013, 9, 651-6.
29. Lee, B.C., Péterfi, Z., Hoffmann, F.W., Moore, R.E., Kaya, A., Avanesov, A., Tarrago, L., Zhou, Y., Weerapana, E., Fomenko, D.E., Hoffmann, P.R., Gladyshev, V.N. MsrB1 and MICALs regulate actin assembly and macrophage function via reversible stereoselective methionine oxidation. Molecular Cell, 2013, 51, 397-404.
28. Qian, Y., Martell, J., Pace N.J., Ballard, E.T., Johnson, D.S.*, Weerapana, E*. An isotopically tagged azobenzene-based cleavable linker for quantitative proteomics. ChemBioChem, 2013, 14, 1410-1414.
27. Banerjee, R., Brown, D.R., Weerapana, E. Recent developments in the synthesis of bioactive 2,4,6-trisubstituted-1,3,5-triazines. (Review) Synlett, 2013, 24, 1599-1605.
26. Gu C., Shannon D.A., Colby T., Wang Z., Shabab M., Kumari S., Villamor J.G., McLaughlin C.J., Weerapana E., Kaiser M., Cravatt B.F., van der Hoorn R.A.L. Chemical proteomics with sulfonyl fluoride probes reveals selective labeling of functional tyrosines in glutathione transferases. Chemistry & Biology, 2013, 20, 541-548.
25. Deng X., Weerapana E., Ulanovskaya O., Sun F., Liang H., Ji Q., Ye Y., Fu Y., Zhou L., Li J., Zhang H., Wang C., Alvarez S., Hicks L.M., Lan L., Wu M., Cravatt B.F., He C. Proteome-wide quantification and characterization of oxidation-sensitive cysteines in pathogenic bacteria. Cell Host Microbe, 2013, 13, 358-70.
24. Banerjee, R., Pace, N.J., Brown, D.R., Weerapana, E. 1,3,5-Triazine as a modular scaffold for covalent inhibitors with streamlined target identification. J. Am. Chem. Soc., 2013, 135, 2497-500.
23. Pace, N.J., Weerapana, E. Diverse functional roles of reactive cysteines. (Review) ACS Chemical Biology, 2013, 8, 283-96.
22. Ramya, T. N. C., Weerapana, E., Cravatt, B. F., Paulson, J. C. Glycoproteomics enabled by tagging sialic acid or galactose terminated glycans. Glycobiology, 2013, 23, 211-21.

ChemBioChem cover, Nov. 5, 2012 21. Shannon, D. A., Gu, C., McLaughlin, C. J., Kaiser, M., van der Hoorn, R. A. L., Weerapana, E. Sulfonyl fluoride analogues as activity-based probes for serine proteases. ChemBioChem, 2012, 13, 2327-2330.
(cover article, see right)
20. Pace, N. J., Pimental, D. R., Weerapana, E.
An inhibitor of glutathione S-transferase omega 1 that selectively targets apoptotic cells. Angew. Chem. Int. Ed., 2012, 124, 8490-8493.
19. Tarrago, L., Kaya, A., Weerapana, E., Marino, S. M., Gladyshev, V. N. Methionine sulfoxide reductases preferentially reduce unfolded oxidized proteins and protect cells from oxidative protein unfolding. J. Biol. Chem., 2012, 287, 24448-24459.

18. Hall, C., Reese, M., Weerapana, E., Child, M., Bowyer, P., Albrow, V., Heraldsen, J., MacDonald, P. Sandoval, E. D., Ward, G., Cravatt, B. F., Boothroyd, J., Bogyo, M. A chemical genetic screen identifies Toxoplasma DJ-1 as a regulator of parasite secretion and invasion. Proc. Natl. Acad. Sci., 2011, 108, 10568-10573.
17. Bachovchin, D. A., Zuhl, A. M., Speers, A. E., Wolfe, M. R., Weerapana, E., Brown, S. J., Rosen, H., Cravatt, B., F.. Discovery and optimization of sulfonyl acrylonitriles as selective, covalent inhibitors of protein phosphate methylesterase-1. J. Med. Chem., 2011, 54, 5229-5236.
16. Ahn, K., Smith, S. E., Liimatta, M. B., Beidler, D., Sadagopan, N., Dudley, D. T., Young, T., Wren, P., Zhang, Y., Swaney, S., Van Becelaere, K., Blankman, J. L., Nomura, D. K., Bhattachar, S. N., Stiff, C., Nomanbhoy, T. K., Weerapana, E., Johnson, D. S., Cravatt, B. F. Mechanistic and pharmacological characterization of PF-04457845: a highly potent and selective FAAH inhibitor that reduces inflammatory and noninflammatory pain. J. Pharmacol. Exp. Ther., 2011, 338, 114-124.

15. Weerapana, E.*, Wang, C.*, Simon, G.M., Richter, F., Khare, S., Dillon, B.D.M., Bachovchin, D.A., Mowen, K., Baker, D., Cravatt, B.F. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature, 2010, 468, 790-795.
*These authors contributed equally to this work.
14. Johnson, D.S., Weerapana, E., Cravatt, B.F. Strategies for discovering and derisking covalent, irreversible enzyme inhibitors. (Review) Fut. Med. Chem. 2010, 2, 949-964.
13. Wurdak, H., Zhu, S., Aimone, L., Lairson, L.L., Watson, J., Chopiuk, G., Min, K.H., Demas, J., Charette, B., Halder, R., Weerapana, E., Cravatt, B.F., Cline, H.T., Peters, E.C. Zhang, J., Walker, J.R., Wu, C., Zhang, J., Tuntland, T., Cho, C.Y., Shultz, P.G., A small molecule accelerates neuronal differentiation in the adult rat. Proc. Natl. Acad. Sci., 2010, 107, 16542-7.
12. Ramya, T. N. C., Weerapana, E., Liao, L., Zeng, Y., Tateno, H., Liao, L., Yates, J., Cravatt, B. F., Paulson, J. C. In situ trans ligands of CD22 identified by glycan-protein photocross-linking-enabled proteomics. Mol. Cell. Proteomics. 2010, 9, 1339-51.


11. Ahn, K., Johnson, D. S., Mileni, M., Beidler, D., Long, J. Z., McKinney, M. K., Weerapana, E., Sadagopan, N., Liimatta, M., Smith, S. E., Lazerwith, S., Stiff, C., Kamtekar, S., Bhattacharya, K., Zhang, Y., Swaney, S., Van Becelaere, K., Stevens, R. C., Cravatt, B. F. Discovery and characterization of a highly selective FAAH inhibitor that reduces inflammatory pain. Chem. Biol. 2009, 16,411-20.


10. Weerapana, E., Simon, G. M., Cravatt, B. F. Disparate proteome reactivity profiles of carbon electrophiles. Nat. Chem. Biol. 2008, 4, 405-7.


9. Chen, M. C., Weerapana, E., Ciepichal, E. Stupak, J., Reid, C.W, Swiezewska, E. and Imperiali, B. (2007) Polysisoprenyl specificity in the Campylobacter jejuni N-linked glycosylation pathway. Biochemistry, 2007, 46, 14342-8.

8. Weerapana, E., Speers, A. E. and Cravatt, B. F. Tandem orthogonal proteolysis-activity-based protein profiling (TOP-ABPP) - a general method for mapping sites of probe modification in proteomes. Nat. Protocols, 2007, 2, 1414-25.

7. Hanson, S. R., Hsu, T-L., Weerapana, E., Kishikawa, K., Simon, G. M., Cravatt, B. F. and Wong, C-H. Tailored glycoproteomics and glycan site mapping using saccharide-selective bioorthogonal probes. J. Am. Chem. Soc., 2007, 129, 7266-7.


6. Glover, K. J.*, Weerapana, E.*, Chen, M. M. and Imperiali B. Direct biochemical evidence for the utilization of UDP-bacillosamine by PglC, an essential glycosyl-1-phosphate transferase in the Campylobacter jejuni N-linked glycosylation pathway. Biochemistry, 2006, 45, 5343-50.
*These authors contributed equally to this work.
5. Weerapana, E. and Imperiali, B. Asparagine-linked protein glycosylation: From eukaryotic to prokaryotic systems. (Review) Glycobiology, 2006, 16, 91R-101R.


4. Glover, K. J.*, Weerapana, E.*, Numao, S. and Imperiali, B. Chemoenzymatic synthesis of glycopeptides with PglB, a bacterial oligosaccharyl transferase from Campylobacter jejuni. Chem. Biol., 2005, 12, 1311-5.
*These authors contributed equally to this work.
3. Weerapana, E., Glover, K. J. and Imperiali, B. Investigating bacterial N-linked glycosylation: synthesis and glycosyl acceptor activity of the undecaprenyl pyrophosphate-linked bacillosamine. J. Am. Chem. Soc., 2005, 127, 13766-7.

2. Glover, K. J., Weerapana, E. and Imperiali, B. In vitro assembly of the undecaprenylpyrophosphate-linked heptasaccharide for prokaryotic N-linked glycosylation. Proc. Natl. Acad. Sci. U.S.A., 2005, 102, 14255-9.


1. Weerapana, E. and Imperiali, B. Peptides to peptidomimetics: towards the design and synthesis of bioavailable inhibitors of oligosaccharyl transferase. Org. Biomol. Chem., 2003, 1, 93-9.