Tiling.
(1) Is it possible to tile the following damaged checkerboard by dominoes? Why or why not? (Notice that it has a square removed from its interior.)

Matching.
(2) Suppose that \(k \geq 1 \) and \(G = (V, E) \) is a \(k \)-regular bipartite graph with bipartition \(V = A \sqcup B \).
 (a) Prove that \(|A| = |B| \).
 (b) Prove that \(G \) contains a perfect matching.
(3) Suppose that \(G = (V, E) \) is a bipartite graph with bipartition \(V = A \sqcup B \) and that Hall’s condition holds:

\[
(*) \text{ for every subset } S \subseteq A, |N(S)| \geq |S|.
\]

Prove that \(G \) contains a matching that uses every vertex of \(A \). (Hint: enlarge \(G \) to a graph to which Hall’s theorem applies, and use it to derive the desired conclusion about \(G \).)

Stable Matching.
(4) From the textbook, Section 2.9, Problem 2: Suppose \(M_1 \) and \(M_2 \) are two stable matchings between \(n \) men and \(n \) women, and we allow each woman to choose between the man she is paired with in \(M_1 \) and the partner she receives in \(M_2 \). Each woman always chooses the man she prefers. Show that the result is a stable matching between the men and the women. (Note that you must prove that the new assignment is a matching before you can prove that it is stable.)