Problem Set nº 4 MAT 885: Graduate Combinatorics Due Feb 22, 2018

Please submit three solutions.

Mycielski’s construction.
Suppose that $\chi(G) = k$ and $|G| = n$. Take a copy of G, and for every vertex v in G, clone it to get a vertex w that has the same neighbors in G as v, for a total of n clone vertices. Join a new vertex by edges to all of the clones. Prove that the resulting graph H is triangle-free if G is, and $\chi(H) = \chi(G) + 1$.

Tutte’s construction.
Suppose that $\chi(G) = k$ and $|G| = n$. Take $(n-1)^k + 1$ copies of G and a set of $(n-1)k + 1$ new vertices. For every n-subset of the new vertices, join them by an arbitrary perfect matching to a distinct copy of G. Prove that the resulting graph H has girth 6 if G does, and $\chi(H) = \chi(G) + 1$.

Erdős’s proof.
Review Erdős’s proof that there exist graphs of arbitrarily large girth and chromatic number. Think about whether the alteration method is actually necessary. What happens if we choose p so that the probability that G contains no cycles of length $\leq l$ is $> 1/2$? That is, how small must we make p? How does this influence the estimate we get on $\alpha(G)$? That is, how small can you make x so that $\Pr(\alpha(G) < x) > 1/2$ for $n \gg 0$? Can you finish the proof, or do you get stuck? What if instead you choose p so that the expected number of cycles of length $\leq l$ is $< 1/2$ and then apply Markov’s theorem?

Brickyards.
Find a drawing of $K_{s,t}$ in the plane with $\left\lfloor \frac{s}{2} \right\rfloor \cdot \left\lfloor \frac{s-1}{2} \right\rfloor \cdot \left\lfloor \frac{t}{2} \right\rfloor \cdot \left\lfloor \frac{t-1}{2} \right\rfloor$ crossings.

Improved crossing numbers.
Prove that if $G = (V,E)$ is a graph and $|E| - 3|V| + 6 > 0$, then any drawing of G contains a crossing between edges with disjoint endpoints. Use this to prove that the number of crossings in G between edges with disjoint endpoints is at least $|E| - 3|V|$.

Crossing numbers.
Suppose that you wish to show that any graph $G = (V,E)$ with $|E| \geq 3.01|V|$ has a large crossing number. Prove a bound of the form $cr(G) \geq c|E|^3/|V|^2$ for some fixed constant $c > 0$. What value do you find for c?

Crossing numbers and multigraphs.
This sequence of exercises comes from Guth’s book. It involves a pleasant use of the probabilistic method. A multigraph is a graph in which parallel edges may appear. The number of edges parallel to a given edge (including itself) is called the multiplicity of that edge. Suppose that $G = (V,E)$ is a multigraph with maximum edge multiplicity M, and suppose that $|E| \geq 4M|V|$.

(a) Prove that

$$cr(G) \geq \frac{1}{64} \frac{|E|^3}{|V|^2 M^3}.$$

Note that there is no restriction on how parallel edges are drawn: two parallel edges may cross completely different subsets of the other edges of G.

(b) Next, assume that each edge multiplicity lies between $M/2$ and M. Prove in this case that

$$cr(G) \geq \frac{1}{256} \frac{|E|^3}{|V|^2 M}.$$

Thus, the constant is a bit worse, but we have made a significant gain in case M is large. (Hint: select one edge at random from each parallelism class in G to form a simple graph G'. Express the expected number of crossings in G' in terms of G, and apply the crossing number lemma to G'.)
(c) Finally, with no condition on minimum edge multiplicities, prove that as long as $|E| \geq 100M|V|$,

$$cr(G) \geq c\frac{|E|^3}{|V|^2M},$$

for some absolute constant $c > 0$. (Hint: Condition on whether or not more than $1/10$ of the edges have multiplicity $\geq M/2$. If so, apply part (b), and if not, induct on $|E|$.) What value for c do you find works?