Midterm 1 will cover the material of all lectures up to and including February 14. More precisely, the following topics are covered:

1. Divisibility. Division algorithm.
2. Euclidean algorithm. Greatest common divisors.
3. Prime numbers.
4. Uniqueness of factorization.
7. Euler’s ϕ-function.
10. Euler’s criterion.

To prepare for the midterm, review your lecture notes and redo the first three problem sets (also read and work through the posted solutions).

Here are a few extra practice problems:

Problem 1. Find the greatest common divisor of 72 and 231. Write it in the form $d = 72x + 231y$.

Problem 2. Write 1 as a linear combination of 12 and 5. What is the multiplicative inverse of 5 modulo 12?

Problem 3. Find a number x which satisfies
\[
\begin{align*}
 x &\equiv 5 \pmod{7} \\
 x &\equiv 2 \pmod{4} \\
 x &\equiv 2 \pmod{3}
\end{align*}
\]

Problem 4. Let p be a prime. For which values of k does p divide $\binom{p}{k}$?

Problem 5. Which of the following numbers are representable as a sum of two integer squares: 41, 122, 150?

Problem 6. Give a definition of Euler’s ϕ-function. Compute $\phi(360)$.

Problem 7. Does equation $x^4 - x^3 + 1 = 0$ have any integer solutions?

Problem 8. Solve $x^3 - 2x + 4 \equiv 0 \pmod{3^3}$.

Problem 9. Let $p > 2$ be a prime. Prove that the map $x \mapsto x^{p-2}$ is a bijection of the complete residue system modulo p onto itself.