MT 806 Algebra I
PROBLEM SET 1

Due Friday 9/14

Problem 1. Let G be a group. Suppose that $G/Z(G)$ is cyclic. Prove that G is abelian.

Problem 2. Let $H ≅ \langle (1234) \rangle ≤ S_n$, where $n ≥ 4$. Compute the normalizer of H in S_n.

Problem 3. Given an action of a group G on a set A, we define $σ_g: A → A$ by $σ_g(a) = g · a$. Verify that the map $φ: G → S_A$ given by $g ↦ σ_g$ is a group homomorphism.

Problem 4. Suppose a group G acts on a set X. Show that $G · x = gG · x g^{-1}$ for every $x ∈ X$ and $g ∈ G$. In other words, the stabilizers of elements in the same orbit are all conjugates.

Problem 5. Compute the number of ways to color the vertices of a cube into 3 colors. Two colorings are equivalent if obtained from one another by a rotation (but not a flip!) in \mathbb{R}^3.

Problem 6. Suppose a group G acts on a set X and $H ≤ G$ is a subgroup. Let

$$X^H := \{ x ∈ X \mid g · x = x, \forall g ∈ H \}$$

be the fixed-point set of H.

(a) Prove that $N_G(H)$ preserves X^H.

(b) Prove that the center of S_n is trivial for $n ≥ 3$.

Problem 7. Suppose H is a subgroup of S_n of index n. Prove that $H ≅ S_{n-1}$.

Problem 8. Suppose n is such that S_n has a transitive subgroup\(^1\) of index n. Prove that S_n has an outer automorphism\(^2\). Prove that S_6 has an outer automorphism.

\(^1\)A subgroup of S_X is called transitive if it acts transitively on X.

\(^2\)A group automorphism is called outer if it is not inner.