Problem 1. Prove that a ring homomorphism \(\phi : R \to S \) is finite if and only if \(\phi \) is finite type and integral.

Remark. Note that \(\phi \) is finite (resp., finite type, resp., integral) if and only if the ring extension \(\phi(R) \subset S \) is. Hence in this problem we can pass to the case of a ring extension \(R \subset S \), as is customary.

Proof. Suppose \(\phi \) is finite. Let \(x_1, \ldots, x_n \) be the generators of \(S \) as an \(R \)-module. Clearly, \(x_1, \ldots, x_n \) generate \(S \) as an \(R \)-algebra. Hence \(\phi \) is finite type. By Proposition 1.1.4 (3), every element of \(S \) is integral over \(R \). Hence \(\phi \) is integral.

Suppose \(\phi \) is finite type and integral. Let \(x_1, \ldots, x_n \) generate \(S \) as an \(R \)-algebra. Since every element of \(S \) is integral over \(R \), we have that \(x_1 \) is integral over \(R \) and, for each \(i = 2, \ldots, n \), the element \(x_i \) is integral over \(R[x_1, \ldots, x_{i-1}] \). It follows by Proposition 1.1.4 (2) that

\[
R[x_1, \ldots, x_{i-1}] \subset R[x_1, \ldots, x_i]
\]

is a finite ring extension for each \(i = 1, \ldots, n \). That \(\phi \) is finite now follows from the following easy lemma:

Lemma. A composition of finite ring extensions is finite.

Proof of lemma. Suppose \(R \subset S \subset T \) are ring extensions such that \(S \) is generated by \(s_1, \ldots, s_n \) as \(R \)-module and \(T \) is generated by \(t_1, \ldots, t_m \) as \(S \)-module. Then it is easy to see that \(\{s_it_j\}_{i,j=1}^{n,m} \) generate \(T \) as \(R \)-module.

Problem 2. Let \(R \) be a ring. Prove that every ideal \(I \) of \(R \) has at least one minimal prime. Moreover, given a prime \(p \) containing \(I \), prove that there is a minimal prime of \(I \) that lies in \(p \).

Proof. Every ideal is contained in a maximal ideal, so it suffices to prove the second statement. Suppose \(I \) is contained in a prime \(p \). Consider the set \(\Sigma \) of all prime ideals \(q \) such that

\[
I \subset q \subset p.
\]

Date: February 3, 2016.
We endow \(\Sigma\) with a partial order given by the relation \(\supset\). Then the existence of a minimal prime of \(I\) lying inside \(p\) follows from the Zorn’s Lemma once the following useful statement is established:

Lemma. Suppose \(\{q_\lambda\}_{\lambda \in S}\) is a chain of prime ideals (i.e., any two ideals in \(S\) are comparable). Then the intersection

\[
J := \bigcap_{\lambda \in S} q_\lambda
\]

is a prime ideal.

Proof of lemma. Suppose \(a, b \notin J\). Then there exists \(k \in S\) such that \(a \notin q_k\) and there exists \(\ell \in S\) such that \(b \notin q_\ell\). Suppose \(q_k \supset q_\ell\). Then \(a, b \notin q_\ell\) and so \(ab \notin q_\ell\) by the primeness of \(q_\ell\). We conclude that \(ab \notin J\). This shows that \(J\) is a prime ideal. \(\square\)

Problem 3. Prove that an \(R\)-module \(M\) is Noetherian if and only if every submodule of \(M\) is finitely generated.

Proof. By definition, \(M\) is Noetherian if and only if the submodules of \(M\) satisfy the ascending chain condition (the a.c.c.) if and only if every non-empty set of submodules of \(M\) has a maximal element. We thus need to prove the following lemma:

Lemma.

1. If every non-empty set of submodules of \(M\) has a maximal element, then every submodule of \(M\) is finitely generated.
2. If every submodule of \(M\) is finitely generated, then the submodules of \(M\) satisfy the a.c.c.

Proof of lemma.

1) Suppose every non-empty set of submodules has a maximal element. Let \(N\) be a submodule of \(M\). Suppose \(N\) is not finitely generated. Let \(N'\) be the maximal among finitely generated submodules of \(N\). Then \(N' \neq N\). Take \(x \in N \setminus N'\). Then \(N' + Rx\) is a finitely generated submodule of \(N\) that properly contains \(N'\). A contradiction!

2) Suppose that all submodules of \(M\) are finitely generated. Let

\[
M_1 \subset M_2 \subset \cdots
\]

be an ascending chain of submodules of \(M\). By assumption,

\[
\bigcup_{i \geq 1} M_i
\]
is a finitely generated module. Let x_1, \ldots, x_d be its generators. For each $j = 1, \ldots, d$, there exists i_j such that $x_j \in M_{i_j}$. It is then clear that for $n = \max\{i_j \mid j = 1, \ldots, d\}$, we have $M_n = M_{n+1} = \cdots$, i.e., the chain is stationary.

□

Problem 4. For a fixed prime p, let $\mathbb{Z}_p = \left\{ \frac{m}{p^n} \mid m, n \in \mathbb{Z} \right\} \subset \mathbb{Q}$ and $W = \mathbb{Z}_p/\mathbb{Z}$. Prove that W is an Artinian, but not Noetherian, \mathbb{Z}-module.

Remark. Recall that a \mathbb{Z}-module is the same thing as an abelian group.

Remark. Note that $\mathbb{Z}_p = \mathbb{Z} \left[\frac{1}{p} \right]$ is the ring of fractions of \mathbb{Z} with respect to $\{p^n\}_{n \geq 0}$.

Proof. The existence of a non-stationary ascending chain of subgroups in W proves that W is not a Noetherian \mathbb{Z}-module:

$$\mathbb{Z} \frac{1}{p} \subset \mathbb{Z} \frac{1}{p^2} \subset \cdots .$$

Before we prove that W is Artinian, we establish a structure result about subgroups of W:

Lemma. Every proper subgroup of $W = \mathbb{Z}_p/\mathbb{Z}$ is cyclic, generated by an element of the form $\frac{1}{p^n}$.

Proof of lemma. Let H be a subgroup of W. Let Γ be the set of positive integers m such that H contains an element of the form $\frac{a}{p^m}$ with $\gcd(a, p) = 1$. Clearly, if $m \in \Gamma$, then $m - 1 \in \Gamma$. Hence either $\Gamma = \mathbb{Z}_{>0}$, or $\Gamma = \{1, \ldots, n\}$ for some n.

Note that if $\frac{a}{p^m} \in H$ for some a with $\gcd(a, p) = 1$, then $ai + j p^n = 1$ for some integers i and j. We then have that

$$\frac{1}{p^m} = i \frac{a}{p^m} + j = i \frac{a}{p^m} \in H .$$

In particular, if $\Gamma = \mathbb{Z}$, then $H = W$, and if $\Gamma = \{1, \ldots, n\}$, then $H = \left\langle \frac{1}{p^n} \right\rangle$. □

By the above lemma, every proper \mathbb{Z}-submodule of W is of the form $\mathbb{Z} \frac{1}{p^n}$, where n is a positive integer. It is now easy to see that every descending chain
of submodules in W is stationary. Indeed, this follows from

$$\mathbb{Z} \frac{1}{p^n} \supset \mathbb{Z} \frac{1}{p^m} \iff n \geq m$$

and the fact that every non-increasing sequence of positive integers is stationary. □

Problem 5. Suppose R is a Noetherian ring. Then an R-module M is Noetherian if and only if M is finitely generated.

Proof. Recall that an R-module is finitely generated if it is a quotient of a finite free module R^n, for some positive integer n.

Suppose R is a Noetherian ring. Then R is a Noetherian R-module and so $R^n = R \oplus \cdots \oplus R$ is a Noetherian R-module by Lemma 1.2.8. Quotients of Noetherian modules are Noetherian by the same lemma. It follows that any finitely generated R-module is Noetherian.

The converse holds for any ring: A Noetherian module is finitely generated by Problem 3 above. □

Problem 6. Find an example of the following:

1. A sub-algebra of a finitely generated algebra that is not finitely generated.

2. A subring of a Noetherian ring that is not Noetherian.

Proof. (1) Analogously to the case of R-modules (cf. Problem 3), we have the following result:

Lemma. For an R-algebra S, the following are equivalent:

1. Every R-subalgebra of S is a finitely generated R-algebra.
2. Every non-empty set of R-subalgebras of S has a maximal element.
3. Every ascending chain of R-subalgebras of S is stationary.

We will leave the proof of the above lemma as an exercise and only note that a non-stationary chain of R-subalgebras

$$S_1 \subseteq S_2 \subseteq \cdots$$

of S defines a non-finitely generated R-algebra $\bigcup_{i \geq 1} S_i$.

With the above as an inspiration, we take R to be any non-zero ring and

$$S = R[x, xy, xy^2, \ldots]$$

to be the subalgebra of $R[x, y]$ generated by the elements $\{xy^n\}_{n \geq 0}$. Clearly, we have an ascending chain of R-subalgebras

$$R \subset R[x] \subset R[x, xy] \subset R[x, xy, xy^2] \subset \cdots.$$
This chain is non-stationary because \(xy^{n+1} \notin R[x, xy, \ldots, xy^n] \). (Any degree 2 or more polynomial in \(x, xy, \ldots, xy^n \) is divisible by \(x^2 \), and no linear polynomial in \(x, xy, \ldots, xy^n \) can be equal to \(xy^{n+1} \).)

It follows that \(S \) is a non-finitely generated \(R \)-subalgebra of a finitely generated algebra \(R[x, y] \).

(2) Let \(R \) be some non-Noetherian domain, e.g., \(R = k[x_1, x_2, \ldots] \) (infinitely many variables). We have that \(R \) is a subring of the field \(\text{Frac}(R) \), which is trivially a Noetherian ring. \(\square \)

Problem 7. Let \(A \) be a Noetherian ring and \(B \) be a finitely generated \(A \)-algebra. Let \(G \) be a finite group of \(A \)-automorphisms of \(B \). Let \(B^G \) be the ring of invariants:

\[
B^G = \{ b \in B \mid \phi(b) = b \text{ for every } \phi \in G \}.
\]

Prove that \(B^G \) is a finitely generated \(A \)-algebra.

Proof. As customary, we can assume that \(A \subset B \) is a ring extension.

In the chain of ring extensions \(A \subset B^G \subset B \), we have that \(B \) is a finitely generated \(A \)-algebra. The fact that \(B^G \) is a finitely generated \(A \)-algebra will follow from Proposition 1.3.13 (Artin-Tate) at once as soon as we prove the following result:

Lemma. The ring extension \(B^G \subset B \) is integral.

Proof of lemma. Take \(b \in B \) and consider the following polynomial in \(t \):

\[
p(t) = \prod_{h \in G} (t - h \cdot b).
\]

Clearly, \(p(b) = 0 \). Also, \(p(t) \) is clearly a \(G \)-invariant polynomial. Indeed, the action of \(G \) on \(B \) extends in a natural way to an action of \(G \) on \(B[t] \), where \(G \) acts trivially on \(t \). The action of \(G \) on \(B[t] \) respects the ring structure, and hence

\[
g \cdot p(t) = \prod_{h \in G} (t - g \cdot (h \cdot b)) = \prod_{h \in G} (t - h \cdot b) = p(t).
\]

It follows that all the coefficients of \(p(t) \) are \(G \)-invariant, and so lie in \(B^G \). Since \(p(t) \) is monic, we conclude that \(b \) is integral over \(B^G \). This finishes the proof. \(\square \)

Problem 8. Let \(k \) be a field of characteristic \(\neq 2 \). Let \(R = k[x, y] \). Let \(G \cong \mathbb{Z}_2 \) be a group of \(k \)-automorphisms of \(R \), where the generator of \(G \) acts by \(x \mapsto -x \) and \(y \mapsto -y \). Compute \(R^G \) and find a set of generators of \(R^G \) as a \(k \)-algebra.
Proof. We have that \(G = \langle \varepsilon \rangle \), where \(\varepsilon^2 = 1 \). It is clear that (all sums below are finite):

\[
\varepsilon \cdot \left(\sum a_{ij} x^i y^j \right) = \sum (-1)^{i+j} a_{ij} x^i y^j.
\]

It follows that

\[
R^G = \left\{ \sum a_{ij} x^i y^j \mid i + j \text{ is even whenever } a_{ij} \neq 0 \right\}.
\]

Obviously, \(x^2, y^2, xy \in R^G \); and every element of the form \(x^i y^j \), where \(i + j \) is even, can be written as a product of elements in \(\{ x^2, y^2, xy \} \). It follows that

\[
R^G = k[x^2, y^2, xy].
\]

\[\square\]

Problem 9. Let \(R \subset S \) be rings and assume that \(R \) is a summand of \(S \) as an \(R \)-module, that is, there exists an \(R \)-module homomorphism \(\pi : S \to R \) such that \(\pi(x) = x \) for every \(x \in R \). Prove that if \(S \) is a Noetherian ring, then \(R \) is also a Noetherian ring.

Proof. Suppose \(I \subset R \) is an ideal of \(R \). Since \(S \) is a Noetherian ring, the extended ideal \(IS \) has finitely many generators. So suppose \(IS = (x_1, \ldots, x_n) \), where \(x_i \in S \). Note that, by the definition of \(IS \), every \(x_i \) can be written as a finite linear combination of the elements in \(I \) with coefficients in \(S \). Let \(y_1, \ldots, y_m \) be all the elements of \(I \) that appear in such expansions. Then for every \(i = 1, \ldots, n \), we have

\[
x_i = \sum_{j=1}^m s_{ij} y_j, \quad \text{for some } s_{ij} \in S.
\]

Since \(x_1, \ldots, x_n \) generate \(IS \) as an \(S \)-module, it follows that \(y_1, \ldots, y_m \in I \) also generate \(IS \) as an \(S \)-module.

I claim now that \(y_1, \ldots, y_m \) generate \(I \) as an \(R \)-module, hence as an ideal in \(R \). Suppose \(a \in I \). Then \(a \in IS \) and so we can write

\[
a = \sum_{j=1}^m r_j y_j = \sum_{j=1}^m y_j r_j, \quad \text{for some } r_j \in S.
\]

Applying \(\pi \) and using the fact that \(\pi \) is an \(R \)-module homomorphism, we obtain

\[
a = \pi(a) = \sum_{j=1}^m y_j \pi(r_j) = \sum_{j=1}^m \pi(r_j) y_j \in (y_1, \ldots, y_m).
\]

This finishes the proof. \[\square\]
Problem 10. Let \(R = R_0 \oplus R_1 \oplus \cdots \) be a graded ring. Prove that the following are equivalent:

1. \(R \) is Noetherian.
2. \(R_0 \) is Noetherian and the irrelevant ideal \(I_+ := R_1 \oplus R_2 \oplus \cdots \) is finitely generated.
3. \(R_0 \) is Noetherian and \(R \) is a finitely generated \(R_0 \)-algebra.

Proof.

(1) \(\Rightarrow \) (2): Suppose \(R \) is Noetherian. Then every ideal of \(R \) is finitely generated. In particular, \(I_+ \) is finitely generated. Note that \(R_0 \cong R/I_+ \). Hence \(R_0 \) is Noetherian.

(3) \(\Rightarrow \) (1): This follows from the Hilbert Basis Theorem (Theorem 1.3.10).

(2) \(\Rightarrow \) (3): It suffices to establish the following lemma, where no assumption on \(R_0 \) is made.

Lemma. Suppose \(R = R_0 \oplus R_1 \oplus \cdots \) is a graded ring. If the irrelevant ideal \(I_+ = R_1 \oplus R_2 \oplus \cdots \) is finitely generated, then \(R \) is a finitely generated \(R_0 \)-algebra.

Proof of lemma. Suppose \(x_1, x_2, \ldots, x_n \) are homogeneous elements generating the ideal \(I_+ \). Set \(d_i = \deg(x_i) \) for \(i = 1, \ldots, n \).

We are going to prove that \(R = R_0[x_1, \ldots, x_n] \). We do so by proving by induction on \(d \) that \(R_d \subset R_0[x_1, \ldots, x_n] \). The case of \(d = 0 \) is the base case. Suppose we know that \(R_0 \oplus \cdots \oplus R_{d-1} \subset R_0[x_1, \ldots, x_n] \) for some \(d \geq 1 \). Take \(f \in R_d \). Then \(f \in I_+ \) and so can be written as

\[
f = \sum_{i=1}^{n} a_i x_i,
\]

where \(a_i \in R \). Since \(f \) and \(x_i \)'s are homogeneous, we must have that \(a_i \)'s are homogeneous; in fact, \(a_i \in R_{d-d_i} \). Since \(d_i \geq 1 \), we have that \(a_i \in R_0[x_1, \ldots, x_n] \) by the inductive assumption. We conclude that \(f \in R_0[x_1, \ldots, x_n] \).

Footnote

[1] Starting from a finite set of not necessarily homogeneous generators of \(I_+ \), we obtain a finite set of homogeneous generators by taking the union of the homogeneous parts of all generators.