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ABSTRACT. We give a direct proof, valid in arbitrary characteristic, of
nefness for two families of F-nef divisors on M0,n. The divisors we con-
sider include all type A level one conformal block divisors as well as
divisors previously not known to be nef.
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1. INTRODUCTION

We prove nefness for two families of divisors on M0,n by a new method.
The first family D1 consists of all type A level one conformal block divisors
and has many geometric incarnations; see Section 3. We give a new proof
that every divisor in D1 defines a base-point-free linear system on M0,n,
which is an isomorphism on M0,n.

The conformal block divisors on M0,n form an important family: They
are nef by work of Fakhruddin [Fak12], often span extremal rays of the
(symmetric) nef cone [AGSS12, AGS10], and are related to Veronese quo-
tients [Gia13, GG12, GJM11, GJMS12]. In particular, CB divisors account
for all known regular morphisms on M0,n [BGM13, Section 19.5].

As an application of our method, we construct a family D2 of nef divi-
sors on M0,n, which do not lie in the cone spanned by the conformal block
divisors. The geometric meaning of this family is elusive, but we speculate
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that it is connected to the morphisms defined by divisors in D1; see Section
4.1

Our proof is elementary in that it relies only on Keel’s relations in Pic(M0,n)

and nothing else. One advantage of this approach is that it works in pos-
itive characteristic, where semiampleness of the conformal block divisors
on M0,n is not generally known.

The key observations that enable our proof are:

(1) The family Di is functorial with respect to the boundary stratifica-
tion, or, equivalently, satisfies factorization in the sense of [BG12].

(2) Every divisor D ∈ Di is linearly equivalent to an effective combina-
tion of the boundary divisors on M0,n.

A standard argument implies that all divisors inDi are nef. (To prove semi-
ampleness of divisors in D1, we show that every D ∈ D1 is linearly equiv-
alent to an effective combination of boundary divisors in such a way as to
avoid any given point of M0,n.)

The above argument is at the heart of the original inductive approach
to the F-conjecture for M0,n; see [GKM02, Question (0.13)] and the discus-
sion surrounding it. F-nef divisors obviously satisfy factorization and the
strong F-conjecture says that every F-nef divisor can be written as an ef-
fective combination of boundary divisors. However, a recent result of Pix-
ton shows that the strong F-conjecture is false: there exists a nef divisor
on M0,12 which is not an effective combination of the boundary divisors
[Pix13].

Nevertheless, one could still hope that the strong F-conjecture holds for a
restricted class of F-nef divisors; restrictions of symmetric F-nef divisors to
the boundary being one example. The divisors in Di are of this form. Thus
the present paper can be regarded as further evidence for the symmetric
F-conjecture.

It would be interesting to know whether all conformal block divisors on
M0,n are effective combinations of the boundary divisors (see the discussion
after Theorem 3.4 below).

1.1. Notation. The ith cotangent line bundle and its divisor class on M0,n is
denoted ψi. We use the notation [n] = {1, . . . , n} and say that a partition I t
J = [n] is proper if |I|, |J| ≥ 2. The boundary divisor on M0,n corresponding

1We do not know a way to prove that a given divisor is not an effective combination of
CB divisors (but see [Swi11] for some results in this direction). Rather, there are explicit
examples of divisors in D2 for which extensive numerical experimentation has failed to
uncover CB divisors whose span could contain them.
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to a proper partition I t J = [n] is denoted ∆I,J . We write ∆ = ∑I,J ∆I,J

for the total boundary divisor; here and elsewhere the summation is taken
over all proper partitions of [n], unless specified otherwise.

Given a set S, we denote by Γ(S) the complete graph on S and by E(S)
the set of all edges of Γ(S). A weighting or a weight function on Γ(S) is a
function w : E(S) → Q. For the complete graph Γ([n]) on the set [n], we
write (i − j) to denote the edge joining vertices i and j. Given a weight
function w on Γ([n]), we make the following definitions:

(1) The w-flow through a vertex k ∈ [n] is defined to be

w(k) := ∑
i 6=k

(w(k− i)).

(2) The w-flow across a partition I t J = [n] is defined to be

w(I | J) = ∑
i∈I,j∈J

w(i− j).

A degree function on Γ(S) is a function S → Z. Given a degree function
i 7→ di on Γ([n]), we set d(I) := ∑i∈I di for any I ⊂ [n]. Given an integer
m ≥ 2, we say that I ⊂ [n] is m-divisible if m | d(I). We call I t J = [n] an
m-partition if m | d(I) and m | d(J).

We denote by 〈a〉m the representative in {0, 1, . . . , m− 1} of a modulo m.
We work over an algebraically closed field of arbitrary characteristic.

2. WEIGHTED GRAPHS AND EFFECTIVE COMBINATIONS OF BOUNDARY

Every divisor on M0,n can be written as
n

∑
i=1

aiψi −∑
I,J

bI,J∆I,J .

This representation is far from unique because we have the following rela-
tion in Pic

(
M0,n

)
for every i 6= j:

(2.1) ψi + ψj = ∑
i∈I,j∈J

∆I,J .

Relations (2.1) generate the module of all relations among {ψi}n
i=1 and {∆I,J};

this follows, for example, from [AC98, Theorem 2.2(d)], which in turn fol-
lows from Keel’s relations [Kee92]. (We note that the above representa-
tion is unique if we impose an additional condition |I|, |J| ≥ 3; see [FG03,
Lemma 2].)

We now state a simple observation that we will use repeatedly in the
sequel.
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Lemma 2.1 (Effectivity criterion). Let R = Z or R = Q. A divisor D =

∑n
i=1 aiψi−∑I,J bI,J∆I,J is R-linearly equivalent to ∑I,J cI,J∆I,J if and only if there

is an R-valued weighting of Γ([n]) such that the flow through each vertex i is ai

and the flow across each proper partition I t J = [n] is bI,J + cI,J .
In particular, D is an effective R-linear combination of the boundary divisors on

M0,n if and only if there exists an R-valued weighting of Γ([n]) such that the flow
through each vertex i is ai and the flow across each proper partition I t J = [n] is
at least bI,J .

Proof. Suppose that for each i 6= j we use the relation (2.1) w(i− j) times to
rewrite D as ∑I,J cI,J∆I,J . Then in the free R-module generated by {ψi}n

i=1
and {∆I,J} we have

∑
I,J

cI,J∆I,J = D−∑
i 6=j

w(i− j)

(
ψi + ψj − ∑

i∈I,j∈J
∆I,J

)

=
n

∑
i=1

(
ai − w(i)

)
ψi −∑

I,J

(
bI,J − w(I | J)

)
∆I,J .

The claim follows. �

3. TYPE A LEVEL ONE CONFORMAL BLOCK DIVISORS REVISITED

In this section, we study the family D1 of type A level one conformal
block divisors.

Definition 3.1. Consider n integers (d1, . . . , dn) and let m ≥ 2 be an integer
dividing ∑n

i=1 di. We define a divisor on M0,n by the following formula

(3.1) D
(
(d1, . . . , dn), m

)
=

n

∑
i=1
〈di〉m〈m− di〉mψi −∑

I,J
〈d(I)〉m〈d(J)〉m∆I,J ,

where d(I) := ∑i∈I di.

The motivation for this definition comes from the following observation
[Fed11, Proposition 4.8]:

Proposition 3.2. For a weight vector ~d = (d1, . . . , dn), let m be an integer di-
viding ∑n

i=1 di. Let E be the pullback to M0,n of the Hodge bundle overMg via
the weighted cyclic m-covering morphism f~d,m and let Ej be the eigenbundle of E

associated to the character j of µm. Then

det Ej =
1

2m2

[
n

∑
i=1
〈jdi〉m〈m− jdi〉mψi −∑

I,J
〈jd(I)〉m〈jd(J)〉m∆I,J

]
.

The divisor D
(
(d1, . . . , dn), m

)
has at least three incarnations:
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(1) It is a type A level 1 conformal block divisor; see [Fak12] for the
definition and [AGSS12] for a detailed study of these divisors. More
precisely, the slm level 1 conformal block divisor D(slm, 1, (d1, . . . , dn))

equals to 2m2D
(
(d1, . . . , dn), m

)
[Fed11].

(2) It is a pullback of a natural polarization on a GIT quotient of a pa-
rameter space of n-pointed rational normal curves [Gia13, GG12].

(3) It is a determinant of a Hodge eigenbundle as in Proposition 3.2.

Each interpretation of D
(
(d1, . . . , dn), m

)
leads to an independent proof of

its nefness. The first via the theory of conformal blocks which realizes
D
(
(d1, . . . , dn), m

)
as a quotient of a trivial vector bundle over M0,n; the

second via GIT, and the third via the semipositivity of the Hodge bundle
overMg, which in turn comes from the Hodge theory [Kol90].

We now propose a fourth proof of nefness of D
(
(d1, . . . , dn), m

)
which is

independent of all of the above and is completely elementary.
Since the definition of D((d1, . . . , dn), m) depends only on 〈di〉m, replac-

ing each di by 〈di〉m we can assume that di ≤ m − 1. We proceed with a
construction of a certain weighting on the complete graph Γ([n]).

Proposition 3.3 (Standard construction). Suppose 1 ≤ di ≤ m− 1 and m |
∑n

i=1 di. There exists a weighting w of Γ([n]) such that

(1) For every vertex i ∈ Γ([n]), we have w(i) = di(m− di).
(2) For every proper partition It J = [n], we have w(I | J) ≥ 〈d(I)〉m〈d(J)〉m.

In addition,

(3) Given a curve [C] ∈ M0,n, we can choose w so that w(I | J) = 〈d(I)〉m〈d(J)〉m
for any I t J = [n] satisfying [C] ∈ ∆I,J .

(4) For any fixed proper partition I t J = [n], the weighting w can be chosen
so that w(I | J) ≥ 2m + 〈d(I)〉m〈d(J)〉m.

Proof. Let ∑n
i=1 di = ms and let S = {p1, . . . , pms} be a multiset of indices

where each index i ∈ {1, . . . , n} appears di times.
Choose a cyclic permutation σ ∈ Sn of [n] = {1, . . . , n} and arrange the

elements of S along a circle at the vertices of a regular ms-gon so that the
di occurrences of each i are adjacent, and the order of {1, . . . , n} along the
circle is given by σ.

Define {Sk}m
k=1 to be the regular s-gons formed by the chords divisible

by m. Since di ≤ m− 1, this subdivision satisfies the following property:

• Each Sk contains at most one occurrence of each i ∈ {1, . . . , n}.
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FIGURE 1. The standard construction of a weighting in the case m = 11
and d1 = 3, d2 = 2, d3 = 1, d4 = 2, d5 = 4, d6 = d7 = 1, d8 = 2, d9 =

3, d10 = d11 = d12 = 1. The indices 1 and 2 are joined by 6 chords of
w1-weight 1 and no chords of length 11. Thus w(1− 2) = 6. The indices
4 and 9 are joined by 6 chords of w1-weight 1 and 2 chords of length 11
and w2-weight −11. Thus w(4− 9) = −16.

For every edge e ∈ E(S), we define

w1(e) =

{
1 if e joins distinct indices,

0 otherwise.

w2(e) =

{
−m if e ∈ E(Sk) for some k = 1, . . . , m,

0 otherwise.

The weight function w1 +w2 on Γ(S) induces in an obvious way a weight
function w on Γ([n]). Namely, the w-weight of the edge (i− j) in Γ([n]) is
the sum of the (w1 + w2)-weights of all edges in S joining the indices i and
j. (Note that by construction, the (w1 + w2)-weight of any edge in S joining
two equal indices is 0).

We now compute the w-flow through each vertex i ∈ [n]. Clearly, the
contribution of w1 to w(i) is di(ms− di) and the contribution of w2 to w(i)
is −mdi(s− 1). Therefore,

w(i) = di(ms− di)−mdi(s− 1) = di(m− di).

This establishes (1). Next we show that the w-flow across each proper par-
tition I t J = [n] is at least 〈d(I)〉m〈d(J)〉m.

Recall that d(I) = ∑i∈I di. Write d(I) = mq + r. Let x1, . . . , xm be the
number of indices from I occurring in each of the sets S1, . . . , Sm. Then
x1 + · · · + xm = d(I) = mq + r. Tracing through the construction we see
that w1(I | J) = d(I)(ms − d(I)) and w2(I | J) = −m ∑m

k=1 xk(s − xk). It
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!

FIGURE 2. A planar realization of a dual graph of a 13-pointed rational
curve C. The half-edges correspond to the marked points. To obtain a
cyclic permutation σ with respect to which all partitions I t J satisfying
[C] ∈ ∆I,J are balanced, choose a loop around the graph. The order in
which the half-edges are encountered as one goes around the loop gives
a requisite permutation.

follows that

(3.2) w(I | J) = d(I)(ms− d(I))−m
m

∑
k=1

xk(s− xk).

Since x(s− x) is a concave function of x, the minimum in (3.2) under the
constraint x1 + · · ·+ xm = mq+ r is achieved when the xi’s differ by at most
1 from each other, i.e. when r of xi’s are equal to q + 1 and m− r of xi’s are
equal to q. (When this happens, we say that I t J is balanced with respect
to σ.) A straightforward computation now shows that for these values of
xi’s Equation (3.2) evaluates to

r(m− r) = 〈d(I)〉m〈d(J)〉m.

This finishes the proof of (2).
Next, we note that if all indices from I occur contiguously in σ, then I t J

is balanced with respect to σ. Observe that for any [C] ∈ M0,n, there exists a
cyclic permutation σ ∈ Sn such that all marked points lying on one side of
any node of C occur contiguously in σ. (This can be seen either by induction
or by examining a planar representation of the dual graph of C as in Figure
2.) This finishes the proof of (3). By the above, the w-flow across I t J is
〈d(I)〉m〈d(J)〉m if and only if I t J is balanced with respect to σ. Otherwise,
the w-flow across I t J is at least 2m + 〈d(I)〉m〈d(J)〉m (indeed, the values
of ∑m

k=1 xk(s− xk) have constant parity). To prove (4), it remains to observe
that for any partition I t J, there exists σ such that I t J is not balanced
with respect to σ. For example, if I = {1, . . . , k} and J = {k + 1, . . . , n},
then σ = (k(k + 1))(12 · · · n)(k(k + 1)) works. �
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Theorem 3.4. D((d1, . . . , dn), m) is an effective sum of boundary divisors on
M0,n and |D((d1, . . . , dn), m)| is a base-point-free linear system on M0,n. More-
over, if m - d1 · · · dn, then D((d1, . . . , dn), m) separates points of M0,n.

Proof. If m | di, then D((d1, . . . , dn), m) = f ∗(D(d1, . . . , d̂i, . . . , dn), m)), where
f : M0,n → M0,n−1 is the morphism forgetting the ith marked point. We
immediately reduce to the case when m - di. In this case, the first claim fol-
lows immediately from Lemma 2.1 by applying Proposition 3.3(1) and (2).
The second claim follows from Proposition 3.3(3), which says that for any
[C] ∈ M0,n, we can find an effective combination of the boundary which is
linearly equivalent to D((d1, . . . , dn), m) and whose support does not con-
tain [C].

Finally, to prove that D((d1, . . . , dn), m) separates points of M0,n when
di’s are not divisible by m, it suffices to show that D((d1, . . . , dn), m) has a
positive degree on any complete irreducible curve T ⊂ M0,n meeting the
interior M0,n. Let T be such a curve. Since M0,n is affine, there exists a
boundary divisor ∆I,J which meets T. By Proposition 3.3(4), we can rewrite
D((d1, . . . , dn), m) as an effective linear combination of boundary in such a
way that the coefficient of ∆I,J is positive. The claim follows. �

It would be interesting to know if all conformal block divisors on M0,n

are effective combination of boundary. In view of Theorem 3.4, one pos-
sible strategy for proving this is to apply the technique of this paper to
an explicit formula for the divisor classes of the conformal block divisors
given by [Muk13, Proposition 4.3]. (Note that Mukhopadhyay’s formula
is a direct consequence of [Fak12] but presents the divisor class in a form
most amenable to applying Lemma 2.1.)

4. DIVISOR FAMILY D2

In this section, we define and prove nefness for a new family of F-nef
divisors on M0,n.

Definition 4.1. Suppose that m ≥ 3 is an integer and m | ∑n
i=1 di. We define

E((d1, . . . , dn), m) := D((d1, . . . , dn), m) + m( ∑
i:m|di

ψi − ∑
I : m|d(I)

∆I,J)

=
n

∑
i=1
〈di〉m〈m− di〉mψi −∑

I,J
〈d(I)〉m〈d(J)〉m∆I,J + m( ∑

i:m|di

ψi − ∑
I,J :m|d(I)

∆I,J).

The motivation for considering these divisors comes from the follow-
ing observation. Suppose that 1 ≤ di ≤ m − 1. Then D((d1, . . . , dn), m)

is a base-point-free divisor on M0,n. It is easy to see that the associated
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morphism f : M0,n → X contracts the boundary divisor ∆I,J whenever
m | d(I).2 It follows that E((d1, . . . , dn), m) is of the form f ∗A− E, where
A is a very ample divisor on X and E is an effective combination of f -
exceptional divisors.

Theorem 4.2. Suppose m ≥ 3 and {di}n
i=1 are such that m | ∑n

i=1 di. Then:

(a) E((d1, . . . , dn), m) is an effective combination of boundary divisors on
M0,n.

(b) E((d1, . . . , dn), m) is nef on M0,n.

Example 4.3. By taking n = 9, d1 = · · · = d9 = 1, and m = 3, we obtain the
divisor ∆2 + ∆3 + 2∆4 in Nef(M0,9). This divisor generates an extremal ray
of the nef cone of M0,9 and is not known to come from the conformal block
bundles; see [Swi11].

It is proved in [Fed11], that in the case d1 = · · · = dn and m = 3, the
divisor E((d1, . . . , dn), m) generates an extremal ray of the symmetric nef
cone of M0,n. We expect this to be true more generally whenever m ≥ 5 is
prime and d1 = · · · = dn.

Proof of Theorem 4.2. Replacing di by 〈di〉m, we can assume that 0 ≤ di ≤
m− 1. Next, we observe that if di = 0, then

E
(
(d1, . . . , dn), m

)
= f ∗

(
E
(
(d1, . . . , d̂i, . . . , dn), m

))
+ mψi,

where f : M0,n → M0,n−1 is the morphism forgetting the ith marked point.
Since ψi is well-known to be an effective combination of boundary (see
[FG03, Lemma 1]), we reduce to the case 1 ≤ di ≤ m − 1. Here, Part (a)
follows immediately from Lemma 2.1 once we establish the existence of a
certain weighting on Γ([n]). This is achieved in Proposition 4.5 below.

We proceed to prove Part (b). Since E((d1, . . . , dn), m) is an effective com-
bination of the boundary divisors on M0,n by Part (a), it has non-negative
degree on any irreducible curve intersecting the interior M0,n.

Next, observe that E((d1, . . . , dn), m) satisfies factorization, that is for any
boundary divisor ∆I,J ⊂ M0,n, we have

E((d1, . . . , dn), m)|∆I,J = E
(
({di}i∈I , ∑

j∈J
dj), m)

)
� E

(
({dj}j∈J , ∑

i∈I
di), m)

)
,

where we use the usual identification ∆I,J ' M0,I∪p ×M0,J∪q. It follows by
a standard argument that E((d1, . . . , dn), m) is nef on M0,n. �

2 A test family computation in [Fed11, Corollary 2.6(2)] establishing this for the case
d1 = · · · = dn applies verbatim in the more general case.
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In the remainder of this section, we finish the proof of Part (a) of Theorem
4.2.

Definition 4.4. Suppose 1 ≤ di ≤ m− 1 and m | ∑n
i=1 di. Let w be a weight-

ing of a complete graph Γ([n]). We say that

(P1) w satisfies (P1) with respect to a vertex i ∈ Γ([n]) if the w-flow
through i is exactly di(m− di).

(P2) w satisfies (P2) with respect to a proper partition I t J = [n] if the
w-flow across I t J is at least 〈d(I)〉m〈d(J)〉m.

(P3) w satisfies (P3) with respect to a proper m-partition I t J = S if the
w-flow across I t J is at least m.

We say that w satisfies (P1), (P2), and (P3), if it satisfies (P1), (P2), and
(P3) with respect to all vertices, all proper partitions, and all proper m-
partitions, respectively.

Proposition 4.5. Let m ≥ 3. Suppose 1 ≤ di ≤ m− 1 and m | ∑n
i=1 di. Then

there exists a weighting w of Γ([n]) satisfying (P1)-(P3).

Proof. In what follows we say that two partitions At B and CtD are trans-
verse if card(A ∩ C) card(A ∩ D) card(B ∩ C) card(B ∩ D) > 0.

Note that the Standard Construction of Proposition 3.3 produces a weight-
ing satisfying (P1) and (P2). The most delicate part of the proof is ensuring
that (P3) holds. We will construct the requisite weighting w by breaking S
into smaller pieces using m-partitions of [n] and averaging.

Construction 4.6. Suppose [n] = S1 t S2 is a proper m-partition. By the
inductive hypothesis, there exist weightings w1 and w2 of Γ(S1) and Γ(S2),
respectively, satisfying (P1)-(P3). These define a weighting wS1|S2

of Γ([n])
in an obvious way:

wS1|S2
(e) =


w1(e) if e ∈ E(S1),

w2(e) if e ∈ E(S2),

0 otherwise

Claim 4.7.

(1) wS1|S2
satisfies (P1).

(2) wS1|S2
satisfies (P2).

(3) The wS1|S2
-flow across every m-partitions of [n], with the exception of S1 t

S2, is at least m. The wS1|S2
-flow across S1t S2 is 0. The wS1|S2

-flow across
every m-partition I t J transverse to S1 t S2 is at least 2m− 2, and is at
least 2m if in addition m | d(S1 ∩ I).
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Proof. The first claim is clear. To prove the second claim, consider a par-
tition I t J = [n]. Let r1 = 〈d(I ∩ S1)〉m and r2 = 〈d(I ∩ S2)〉m. Without
loss of generality, we can assume that r1 + r2 ≤ m. Then the wS1|S2

-flow
between I and J is at least r1(m− r1) + r2(m− r2) ≥ (r1 + r2)(m− r1 − r2),
as desired.

We proceed to prove the third claim. Clearly, wS1|S2
-flow across S1 t

S2 is 0. Let I t J be another m-partition of [n]. Suppose first that I t J is
transverse to S1 t S2. The wS1|S2

-flow across I ∪ J is the sum of the w1-flow
across (I ∩ S1) t (J ∩ S1) in S1 and the w2-flow across (I ∩ S2) t (J ∩ S2) in
S2. Let r1 = 〈d(I ∩ S1)〉p. Applying the inductive hypothesis we see that if
r1 = 0, then the resulting wS1|S2

-flow is at least 2m. If 1 ≤ r1 ≤ m− 1, then
the wS1|S2

-flow across I ∪ J is at least 2r1(m− r1) ≥ 2m− 2.
Finally, suppose that I t J is not transverse to S1 t S2. Without loss of

generality, we can assume that S1 ( I. Then the wS1|S2
-flow across I t J

equals to the w2-flow across (I ∩ S2) t (J ∩ S2), which is at least m by the
inductive hypothesis because (I ∩ S2) t (J ∩ S2) is a proper m-partition of
S2. �

Using Construction 4.6, we proceed to construct the weighting w us-
ing averaging and induction on ∑n

i=1 di. The case of ∑n
i=1 di = m follows

from Proposition 3.3 because there are no proper m-partitions. Suppose
∑n

i=1 di = sm, where s ≥ 2.
Case 1: There is at most one proper m-partition I | J of [n]. In this case, the

claim follows by Proposition 3.3(4) because we can arrange the flow across
the unique m-partition to be at least 2m.

Case 2: There are exactly two distinct m-partitions of [n]. Call them At B and
CtD. By the assumption these must be transverse (otherwise, there would
exist at least 3 distinct m-partitions). By Proposition 3.3(4), there exists a
weighting w1 of Γ([n]) satisfying (P1)-(P2) and w1(A | B) ≥ 2m. Similarly,
there exists a weighting w2 of Γ([n]) satisfying (P1)-(P2) and w2(C | D) ≥
2m. It follows that w := (w1 + w2)/2 is a weighting of Γ([n]) satisfying
(P1)-(P3).

Case 3: [n] is not a disjoint union of three non-trivial m-divisible subsets and
there are k ≥ 3 distinct m-partitions of [n]. Let {Ai t Bi}k

i=1 be all m-partitions
of [n]. Let wi := wAi |Bi

as constructed in Construction 4.6. Then w :=
(∑k

i=1 wi)/k is a weighting of Γ([n]) satisfying (P1)-(P3). Indeed, (P1)-(P2)
clearly hold. Furthermore, for any m-partition Ai t Bi and j 6= i, we have
wj(Ai t Bi) ≥ 2m− 2 by Claim 4.7(3). It follows that

w(I | J) ≥ (k− 1)(2m− 2)/k ≥ m,
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if m ≥ 4 or if m = 3 and k ≥ 4. (If m = 3, it is easy to see that k ≥ 4.)
Case 3: [n] is a disjoint union of four non-trivial m-divisible subsets. Let [n] =

A ∪ B ∪ C ∪ D, where m | d(A), d(B), d(C), d(D). Using Construction 4.6,
we obtain the following three weightings of [n]:

w1 := w(A∪B)|(C∪D), w2 := w(A∪C)|(B∪D), w3 := w(A∪D)|(B∪C).

Set w := (w1 + w2 + w3)/3. Then

w((A ∪ B) | (C ∪ D)) ≥ (0 + 2m + 2m)/3 > m.

Hence w satisfies (P3) with respect to (A∪ B)t (C∪D). Similarly, it is easy
to see from the construction that w satisfies (P3) with respect to all proper
m-partitions.

Case 4: [n] is a disjoint union of three non-trivial m-divisible subset but not
a disjoint union of four non-trivial m-divisible subsets. The case of m = 3 is
straightforward and so we assume m ≥ 4 in what follows. Let [n] = S1 ∪
S2 ∪ S3, where m | d(Si).

Suppose first that Si t Sj is the unique m-partition of (Si ∪ Sj) for all
i 6= j. Let w12 := w(S1∪S2)|S3

be the weighting of Γ([n]) from Construction
4.6. Since S1 ∪ S2 has a unique m-partition, we can arrange the w12-flow
across S1 t S2 in S1 ∪ S2 to be at least 2m by Proposition 3.3(4). Define
analogously w13 and w23. Then

w := (w12 + w13 + w23)/3

is a weighting of Γ([n]) satisfying (P1)-(P3).
Finally, without loss of generality, suppose that S1∪S2 has an m-partition

A t B distinct from S1 t S2. Then A t B must be transverse to S1 t S2. The
average of the following weightings of Γ([n]) constructed using Construc-
tion 4.6:

wS1|(S2∪S3), wS2|(S1∪S3), wA|(B∪S3), wB|(A∪S3)

satisfies (P1)-(P3). Indeed, we must verify that the flow across S1t (S2∪ S3)

is at least m, the other cases being analogous or easier. By construction, the
flow across S1 t (S2 ∪ S3) is at least (0 + m + (2m − 2) + (2m − 2))/4 ≥
m. �

Acknowledgements. The author was partially supported by NSF grant
DMS-1259226. We thank David Swinarski for helpful discussions related
to this work and for help with experimental computations performed us-
ing his Macaulay 2 package ConfBlocks. We also thank Anand Deopurkar
for hospitality and stimulating discussions.



NEW NEF DIVISORS ON M0,n 13

REFERENCES

[AC98] Enrico Arbarello and Maurizio Cornalba. Calculating cohomology groups of
moduli spaces of curves via algebraic geometry. Inst. Hautes Études Sci. Publ.
Math., (88):97–127 (1999), 1998.

[AGS10] V. Alexeev, A. Gibney, and D. Swinarski. Conformal blocks divisors on M0,n from
sl2, 2010. arXiv:1011.6659 [math.AG].

[AGSS12] Maxim Arap, Angela Gibney, James Stankewicz, and David Swinarski. sln level 1
conformal blocks divisors on M0,n. Int. Math. Res. Not. IMRN, (7):1634–1680, 2012.

[BG12] M. Bolognesi and N. Giansiracusa. Factorization of point configurations, cyclic
covers and conformal blocks. To appear in Journal of the European Mathematical
Society, 2012. arXiv:1208.4019 [math.AG].

[BGM13] Prakash Belkale, Angela Gibney, and Swarnava Mukhopadhyay. Quantum
cohomology and conformal blocks on M0,n, 2013. arXiv:arXiv:1308.4906

[math.AG].
[Fak12] Najmuddin Fakhruddin. Chern classes of conformal blocks. In Compact moduli

spaces and vector bundles, volume 564 of Contemp. Math., pages 145–176. Amer.
Math. Soc., Providence, RI, 2012.

[Fed11] Maksym Fedorchuk. Cyclic covering morphisms on M0,n, 2011. arXiv:1105.0655
[math.AG].

[FG03] Gavril Farkas and Angela Gibney. The Mori cones of moduli spaces of pointed
curves of small genus. Trans. Amer. Math. Soc., 355(3):1183–1199 (electronic), 2003.

[GG12] Noah Giansiracusa and Angela Gibney. The cone of type A, level 1, conformal
blocks divisors. Adv. Math., 231(2):798–814, 2012.

[Gia13] Noah Giansiracusa. Conformal blocks and rational normal curves. J. Algebraic
Geom., 22(4):773–793, 2013.

[GJM11] N. Giansiracusa, D. Jensen, and H.-B. Moon. GIT Compactifications of M0,n and
Flips, 2011. arXiv:1112.0232 [math.AG].

[GJMS12] A. Gibney, D. Jensen, H.-B. Moon, and D. Swinarski. Veronese quotient models
of M0,n and conformal blocks, 2012. arXiv:1208.2438 [math.AG].

[GKM02] Angela Gibney, Sean Keel, and Ian Morrison. Towards the ample cone of Mg,n. J.
Amer. Math. Soc., 15(2):273–294 (electronic), 2002.

[Kee92] Sean Keel. Intersection theory of moduli space of stable n-pointed curves of genus
zero. Trans. Amer. Math. Soc., 330(2):545–574, 1992.

[Kol90] János Kollár. Projectivity of complete moduli. J. Differential Geom., 32(1):235–268,
1990.

[Muk13] Swarnava Mukhopadhyay. Rank-Level duality and Conformal Block divisors,
2013. arXiv:1308.0854 [math.AG].

[Pix13] Aaron Pixton. A nonboundary nef divisor on M0,12. Geom. Topol., 17(3):1317–1324,
2013.

[Swi11] David Swinarski. sl2 conformal block divisors and the nef cone of M0,n, 2011.
arXiv:1107.5331 [math.AG].

DEPARTMENT OF MATHEMATICS, BOSTON COLLEGE, CARNEY HALL 324, 140 COM-
MONWEALTH AVENUE, CHESTNUT HILL, MA 02467

E-mail address: maksym.fedorchuk@bc.edu


	1. Introduction
	2. Weighted graphs and effective combinations of boundary
	3. Type A level one conformal block divisors revisited
	4. Divisor family D2
	References

