1. Compute the derivatives of the following functions \(f(x) \).
 a) \(f(x) = \log(\cos x) \)
 b) \(f(x) = e^{-x^2} \)
 c) \(f(x) = x \log x \)
 d) \(f(x) = e^x \sin x \)
 e) \(f(x) = 2^{\arctan x} \)

2. Consider the function \(f(x) = x^x \), defined for \(x > 0 \).
 a) Compute \(f'(x) \) and find the point(s) \(x \) where \(f'(x) \) is positive, negative and zero.
 b) Compute \(f''(x) \) and find the point(s) \(x \) where \(f'(x) \) is positive, negative and zero.
 c) Use your information from a) and b) to sketch the graph of \(x^x \)

3. Find the \(n^{th} \) Taylor polynomial of the function \(f(x) = 2^x \).

4. Find the point of maximum curvature on the graph of \(y = e^x \).

5. The **Hyperbolic trigonometric functions** \(\cosh(x) \) and \(\sinh(x) \) \(^1\) are defined by
 \[
 \cosh x = \frac{e^x + e^{-x}}{2}, \quad \sinh x = \frac{e^x - e^{-x}}{2}.
 \]
 a) Show that \(\cosh^2 x - \sinh^2 x = 1 \). Explain why these functions are called “hyperbolic”.
 b) Show that \((\cosh x)' = \sinh x \) and \((\sinh x)' = \cosh x \).
 c) Compute the Taylor polynomials for \(\cosh x \) and \(\sinh x \) and compare with the Taylor polynomials for \(\cos x \) and \(\sin x \).

6. The inverse function of \(\sinh x \) is called \(\text{arcsinh} x \). Express \(\text{arcsinh} x \) in terms of the logarithm function.
 [Hint: solve for \(y \) in the equation \(x = \sinh y \).]

\(^1\) pronounced “kosh” and “cinch”