MATH 2202 Homework 7 with Solutions
Due Friday March 15

Homework to be turned in

1. Let \(f(x, y) = \frac{1}{1 + x^2 + y^2} \).
 (a) Find the critical point of \(f \)
 (b) Compute the degree-two Taylor expansion of \(f \) at the critical point.
 (c) Draw the graphs of \(f \) and its degree-two Taylor expansion.

2. For the functions \(f \) below, find all of the critical point(s) and classify them according to local min, local max, saddle, or degenerate.
 (a) \(f = (\cosh x)(\sin y) \)
 (b) \(f = \cos(xy) \)

3. The two functions below have \((0, 0)\) as a critical point. Show that the Hessian gives no information about this critical point and find another way to decide if \((0, 0)\) is a maximum, minimum or neither.
 (a) \(f(x, y) = x^3y^3 \)
 (b) \(g(x, y) = 4 - 3x^2y^2 \).

4. The functions below have \((0, 0)\) as a critical point. Without taking any partial derivatives, compute quadratic term
 \[
 \frac{1}{2} \left[f_{xx}(0, 0)x^2 + 2f_{xy}(0, 0)xy + f_{yy}(0, 0)y^2 \right]
 \]
 in the Taylor expansion of \(f \) and use it to classify the critical point \((0, 0)\).
 (a) \(f = (1 + x^2 + y^2)^2 \)
 (b) \(g = e^{xy} \)
 (c) \(h = (\cosh x)(\cos y) \).

5. Consider the function \(f(x, y) = x^2 - 4xy + y^2 \). On the line \(y = 0 \) we have \(f(x, 0) = x^2 \) which has a minimum at \(x = 0 \). On the line \(x = 0 \) we have \(f(0, y) = y^2 \) which has a minimum at \(y = 0 \). It may seem plausible that \(f \) has a local minimum at \((0, 0)\), but it does not.
 (a) Explain this by drawing some level curves of \(f \), including the critical curve, along with the lines \(x = 0 \) and \(y = 0 \).
 (b) Explain this by computing the Hessian \(H_f(0, 0) \).
6. Decide whether the following vector fields $F : U \to \mathbb{R}^2$ are conservative, either by showing that F is not conservative or by finding a potential function for F. (See practice problem 4.)

(a) $F = (ax + by)i + (cx + dy)j$ ($b \neq c$)

(b) $F = (ax + by)i + (bx + cy)j$

(c) $F = \nabla \phi$, for any smooth positive function ϕ on U.

7. Suppose F is a vector field on an open set U in the Plane and that ϕ and ψ are two potential functions for F.

Assuming U is connected, show that $\phi = \psi + c$ for some constant c. [Hint: See practice problem 7 and the definition prior to it.]

8. Let T be an equilateral triangle in the Plane and let P be a point inside T. Prove that the sum of the distances from P to the sides of the triangle is the same for all interior points P.

The sum of the distances to the sides is the same for all points

[Hint: Let U be the interior of T and let $f : U \to \mathbb{R}$ be the function $f(P) = |P\ell_1| + |P\ell_2| + |P\ell_3|$ where ℓ_1, ℓ_2, ℓ_3 are the sides of T. Use practice problems 6 and 7.]

Practice Problems: (not to be turned in)

1. Find and classify the critical points of $f(x, y) = (x^2 - y^2 - 1)^2 + 4x^2y^2$.

Solution: We compute $f_x = 4x(x^2 + y^2 - 1)$ and $f_y = 4y(x^2 + y^2 + 1)$, so the critical points are $(0, 0)$ and $(\pm 1, 0)$. Continuing, we get

\[
\begin{align*}
f_{xx} &= 4(3x^2 + y^2 - 1) \\
f_{xy} &= 8xy \\
f_{yy} &= 4(x^2 + 3y^2 + 1).
\end{align*}
\]
At these points the Hessian determinants are

\[H_f(0, 0) = -16 \quad H_f(\pm 1, 0) = 64. \]

So \((0, 0)\) is a saddle and since \(f_{xx}(\pm 1, 0) = 8\), the points \((\pm 1, 0)\) are local minima.

2. Let \(U\) be the part of the Plane with the hyperbola \(xy = 1\) removed, and let \(f : U \to \mathbb{R}\) be the function \(f(x, y) = \frac{1}{1 - xy}\).

(a) Find the critical point of \(f\).

(b) Without taking second partial derivatives, find the degree-two Taylor expansion of \(f\) at the critical point.

(c) Use the Taylor expansion to classify the critical point.

Solution:

(a) \(f_x = yf^2\) and \(f_y = xf^2\), and \(f\) is never zero, so \((0, 0)\) is the critical point.

(b) Using the geometric series \(\frac{1}{1 - xy} = 1 + xy + (xy)^2 + \cdots\), so the quadratic term is \(xy\).

(c) \(xy\) is a saddle.

3. Let \(f(x, y) = xy\), defined on the right half-plane \(x > 0\). Find the critical points of \(f\), and classify them according to local min, local max, saddle, or degenerate. Also give the degree two Taylor expansion at the critical point.

Solution: \(f_x = (y/x)f, f_y = (\log x)f\). Since \(f > 0\) the unique critical point is \((1, 0)\) and \(f(1, 0) = 1\). Continuing,

\[f_{xx} = (y^2 - y)\frac{f}{x^2} \quad f_{xy} = (1 + y \log x)\frac{f}{x} \quad f_{yy} = (\log x)^2 f \]

so the Hessian is \(0^2 - 1 = -1\), meaning the critical point is a saddle. The Taylor expansion at \((1, 0)\) is \(f(x + 1, y) \approx 1 - xy\).

4. Decide whether the following vector fields \(\mathbf{F} = fi + gj\) are conservative, either by showing that \(\mathbf{F}\) is not conservative or by finding a potential function for \(\mathbf{F}\).

(a) \(\mathbf{F} = (x + 2y)i + (x - 2y)j\)

(b) \(\mathbf{F} = (x + 2y)i + (2x - y)j\)
(c) \(\mathbf{F} = \frac{y}{x} \mathbf{i} + \log x \mathbf{j} \), where \(x > 0 \).

Solutions:

(a) is not conservative because \(g_x - f_y = 1 - 2 \neq 0 \).
(b) is conservative with potential function \(\varphi = \frac{x^2}{2} + 2xy - \frac{y^2}{2} \).
(c) is conservative with potential function \(\varphi = y \log x = \log(x^y) \).

5. Compute the curl of the vector fields

\[\mathbf{F} = \frac{-yi + xj}{\sqrt{x^2 + y^2}} \quad \text{and} \quad \mathbf{G} = \frac{-yi + xj}{x^2 + y^2} \]

Solution: \(\nabla \times \mathbf{F} = \frac{1}{\sqrt{x^2 + y^2}} \), and \(\nabla \times \mathbf{G} = 0 \).

6. Suppose \(U \) is the half-Plane on one side of a line \(\ell \). Let \(f : U \to \mathbb{R} \) be the function \(f(P) = |\ell P| \) giving the distance from \(P \) to \(\ell \). Prove that \(\nabla f = \mathbf{u} \) (constant), where \(\mathbf{u} \) is the unit vector normal to \(\ell \) pointing towards \(U \).

Solution: The level curves of \(f \) are lines parallel to \(\ell \), so \(\mathbf{u} \) is normal to the level curves of \(f \). Hence \(\nabla f \) is parallel to \(\mathbf{u} \) at each point \(P \) in \(U \). This means that \(f(P) = \lambda(P)\mathbf{u} \) for some scalar \(\lambda(P) \). Since \(\mathbf{u} \) is a unit vector we have

\[f_u(P) = \nabla f(P) \cdot \mathbf{u} = \lambda(P)\mathbf{u} \cdot \mathbf{u} = \lambda(P). \]

On the other hand, \(\nabla f(P) \cdot \mathbf{u} = f_u(P) \) is the directional derivative, and by definition

\[f_u(P) = \lim_{t \to 0^+} \frac{f(P + t\mathbf{u}) - f(P)}{t}. \]

But \(f(P + t\mathbf{u}) = f(P) + t \) since \(\mathbf{u} \) is normal to \(\ell \). So

\[f_u(P) = \lim_{t \to 0^+} \frac{f(P) + t - f(P)}{t} = 1. \]

Therefore \(\lambda(P) = 1 \) so \(\nabla f = \mathbf{u} \), as claimed. (A similar argument is in example 2 of section 6.4. Note we don’t need coordinates as we did in hw 1 because now we have the Gradient Theorem.)

Definition: We say an open subset \(U \) of the Plane is **connected** if any two points can be joined by a differentiable path in \(U \), that is, if for any two points \(P \) and \(Q \) in \(U \)
there is a differentiable function $\gamma : [a, b] \to U$ such that $\gamma(a) = P$ and $\gamma(b) = Q$. For example the whole Plane is connected, the Plane with finitely many points removed is connected, and the Plane with a line removed is not connected.

7. Suppose U is an open connected set in the plane. Prove that if $f : U \to \mathbb{R}$ is differentiable and ∇f is zero everywhere on U then f is constant. [Hint: Apply the Mean-Value Theorem to the function $f(\gamma(t))$.

Solution: Let P and Q be two points in U. Since U is connected there is differentiable path $\gamma : [a, b] \to U$ such that $\gamma(a) = P$ and $\gamma(b) = Q$. Applying the Mean-Value Theorem to the function $\phi(t) = f(\gamma(t))$, there is a number c between a and b such that $\phi(b) - \phi(a) = \phi'(c)(b - a)$. Note that $\phi(b) = f(\gamma(b)) = f(Q)$ and $\phi(a) = f(\gamma(a)) = f(P)$. So $f(Q) - f(P) = \phi'(c)(b - a)$.

By the Gradient Chain Rule, we have $\phi'(c) = \nabla f(\gamma(c)) \cdot \gamma'(c)$. This is zero because $\gamma(c)$ is in U and ∇f is zero everywhere on U. So $f(Q) - f(P) = 0$, as was to be shown.