1. Let F be the vector field $F = xj$.
 (a) Draw a picture of F.
 (b) Express the integral $\int_C F \cdot T$ integral explicitly for an arbitrary curve C with oriented parameterization $\gamma(t) = (x(t), y(t))$, where $a \leq t \leq b$. Here “explicitly” means in terms of x, y, x', y'.

2. Continue with $F = xj$. Use your formula from 1(b) to compute the line integral $\int_C F \cdot T$ over the following ccw curves, then compute the area inside each curve.
 (a) C is the triangle $(0, 0)$ to $(b, 0)$ to (a, h) back to $(0, 0)$, where b, h are positive and a is arbitrary.
 (b) C follows the graph of $y = x^2$ from $(0, 0)$ to $(1, 1)$, then follows the graph of $x = y^2$ from $(1, 1)$ back to $(0, 0)$.

3. Let C be the oriented curve parametrized by $\gamma(t) = (1 + t, 1 - t^2)$ for $0 \leq t \leq 1$. Let $F = -yi + xj$.
 (a) Draw C and the arrows for F at the points on C where $x = 1, \frac{3}{2}, 2$. Use this picture to determine the sign of $\int_C F \cdot T$ without computing the line integral.
 (b) Compute $\int_C F \cdot T$.

4. Let C be the first-quadrant part of the unit circle centered at $(0, 0)$, from $(1, 0)$ to $(0, 1)$. Consider the vector fields
 \[F = (e^x \sin y)i + (e^x \cos y)j \quad \text{and} \quad G = (e^x \cos y)i + (e^x \sin y)j. \]
 Compute either $\int_C F \cdot T$ or $\int_C G \cdot T$, your choice.
5. In xy coordinates with $O = (0, 0)$, the Vortex vector field is

$$
V_O = \frac{-y \mathbf{i} + x \mathbf{j}}{x^2 + y^2}.
$$

Consider the inward spiral parametrized by $\gamma(t) = (e^{-t} \cos t, e^{-t} \sin t)$, for $t \geq 0$.

(a) Compute the function $V_O(\gamma(t)) \cdot \gamma'(t)$.

(b) Use (a) to compute the line integral of $\int_C V_O \cdot \mathbf{T}$ where C consists of any complete inward turn of the spiral.

6. Use a potential function to compute the line integral of $V_O \cdot \mathbf{T}$ over any curve C travelling from the positive x-axis to the negative x-axis while staying in the upper half-plane $y \geq 0$.

7. Let U be the Plane with a point O removed. Find the gradient $\nabla \varphi$ of the function $f(P) = |OP|$ (Hint: follow the method of practice problem 6 on hw 7.)

8. The two-dimensional electric field caused by a unit point charge at O is the vector field

$$
E_O(P) = -\frac{\overrightarrow{OP}}{|OP|^2}.
$$

Find a potential function for E_O on the Plane with O removed. (Hint: previous problem and hw 7 problem 4(c).)
Practice Problems: (not to be turned in)

1. Compute \(\int_C \mathbf{F} \cdot \mathbf{T} \) where

 (a) \(\mathbf{F} = x \mathbf{i} + y \mathbf{j} \) and \(C \) is the line segment from \((1,0)\) to \((0,2)\)

 (b) \(\mathbf{F} = x \mathbf{i} + y \mathbf{j} \) and \(C \) is parametrized by \(\gamma(t) = (\cos t, 2 \sin t), \ 0 \leq t \leq \frac{\pi}{2} \).

 (c) \(\mathbf{F} = -y \mathbf{i} + x \mathbf{j} \) and \(C \) as in (a).

 (d) \(\mathbf{F} = -y \mathbf{i} + x \mathbf{j} \) and \(C \) as in (b).

Answers:

(a) \(\frac{3}{2} \) (b) \(\frac{3}{2} \) (c) \(2 \) (d) \(\pi \).

Could you have predicted that (a) and (b) would be the same but (c) and (d) might not be?

2. Compute \(\int_C \mathbf{F} \cdot \mathbf{T} \) where

 (a) \(\mathbf{F} = (x + 2y + 1) \mathbf{i} + (2x - y + 1) \mathbf{j} \), \(C \) is the graph of \(y = x^2 \) from \((0,0)\) to \((1,1)\).

 (b) \(\mathbf{F} = \cos x \mathbf{i} + \sin y \mathbf{j} \), \(C \) is the ccw unit circle centered at \((0,0)\).

 (c) \(\mathbf{F} = ye^x \mathbf{i} + xe^y \mathbf{j} \), \(C \) is the line segment from \((0,0)\) to \((1,2)\).

 (d) \(\mathbf{F} = (x + 2y + 1) \mathbf{i} + (2x - y + 1) \mathbf{j} \) and \(C \) is a squiggly path from \((0,1)\) to \((2,0)\).

Solutions: (a) \(4 \) (b) A potential function is \(\varphi = \sin x - \cos y \), so the integral over any closed curve is zero.

 (c) \(\int_0^1 (2te^t + 2te^{2t}) \, dt = (e^2 + 5)/2 \).

 (d) A potential function is

 \[\varphi = \frac{x^2}{2} + 2xy - \frac{y^2}{2} + x + y \]

 so the line integral is \(\varphi(2,0) - \varphi(0,1) = 4 - (1/2) = 7/2 \).

3. Let \(C \) be the oriented line segment from \((1,2)\) to \((2,1)\) and let \(\mathbf{F} = -yi + xj \).

 (a) Draw \(C \) and the arrows for \(\mathbf{F} \) at the points on \(C \) where \(x = 1, \frac{3}{2}, 2 \). Use this picture to predict the sign of \(\int_C \mathbf{F} \cdot \mathbf{T} \) without computing the line integral.

 (b) Compute \(\int_C \mathbf{F} \cdot \mathbf{T} \).
Solution: (a) The arrows are pointing generally northwest, while C heads southwest. So the integral should be negative.

(b) $\int_C F \cdot T = -3$.

4. Compute $\int_C F \cdot T$ where

$$F = (\cos x \cos y)i - (\sin x \sin y)j,$$

and C is the graph of $y = x^2$ from $(0,0)$ to $(1,1)$.

Solution: Check that $\nabla \times F = 0$. Then look for a potential function φ. We need

$$\varphi_x = \cos x \cos y \quad \varphi_y = -\sin x \sin y.$$

The first says $\varphi = \sin x \cos y + c(y)$ where $c(y)$ is a function of y alone. Then the second equation becomes $\varphi_y = -\sin x \sin y + c'(y)$. So we can take $c = 0$ and $\varphi = \sin x \cos y$. Now evaluate at the endpoints to get

$$\int_C F \cdot T = \varphi(1,1) - \varphi(0,0) = (\sin 1)(\cos 1).$$

5. In xy coordinates with $O = (0,0)$, the Vortex vector field is

$$V_O = \frac{-yi + xj}{x^2 + y^2}.$$

Use parametrizations to compute the integral $\int_C V_O \cdot T$ over the following paths:

(a) $\gamma(t) = (\cos t, \sin t)$ for $0 \leq t \leq \pi/2$.

(b) The line segment from $(1,0)$ to $(1,1)$ followed by the line segment from $(1,1)$ to $(0,1)$

(c) $\gamma(t) = (\cos t, \sin t)$ for $0 \leq t \leq \pi$.

(d) $\gamma(t) = (\cos t, -\sin t)$ for $0 \leq t \leq \pi/2$.

Answers: (a) $\pi/2$ (b) $\pi/2$ (c) π (d) $-\pi$.

You can check these by instead computing the line integrals using a potential function on the Plane with the negative y-axis removed.