Exercise 1. (1.9) Let \(x = A \mid B, x' = A' \mid B' \) be cuts in \(\mathbb{Q} \). We defined \(x + x' = (A + A') \mid \text{rest of } \mathbb{Q} \).

(a) Show that although \(B + B' \) is disjoint from \(A + A' \), it happens in certain cases that \(\mathbb{Q} \neq (A + A') \cup (B + B') \).

(b) Use (a) to explain why defining \(x + x' = (A + A') \mid (B + B') \) would be incorrect.

(c) Why did we not define \(x \cdot x' = (A \cdot A') \mid \text{rest of } \mathbb{Q} \)?

Solution. put your solution here

Exercise 2. Prove that for each cut \(x \) we have \(x + (-x) = 0^* \). [This is not entirely trivial.]

Solution.

Exercise 3. A multiplicative inverse of a nonzero cut \(x = A \mid B \) is a cut \(y = C \mid D \) such that \(x \cdot y = 1^* \).

(a) If \(x > 0^* \) what are \(C \) and \(D \)?

(b) If \(x < 0^* \) what are \(C \) and \(D \)?

(c) Prove that the multiplicative inverse of \(x \) is unique.

Solution.

Exercise 4. (a) Prove that there does not exist a smallest positive real number.

(b) Is there a smallest positive rational number? (Prove your answer.)

(c) Given a real number \(x \) does there exist a smallest real number \(y \) such that \(y > x \)? (Prove your answer.)

Solution.

Exercise 5. Let \(b = \text{l.u.b.}(S) \), where \(S \) is a bounded nonempty subset of \(\mathbb{R} \).

(a) Given \(\epsilon > 0 \) show that there exists an \(s \in S \) with \(b - \epsilon < s \leq b \).

(b) Can \(s \in S \) always be found so that \(b - \epsilon < s < b \)?

(c) If \(x = A \mid B \) is a cut in \(\mathbb{Q} \), show that \(x = \text{l.u.b.}(A) \).

Exercise 6. Let \(x = A \mid B \) be the cut in \(\mathbb{Q} \) with

\[
A = \{r \in \mathbb{Q} : r \leq 0 \text{ or } r^2 < 2\}.
\]

Prove that \(x^2 = 2 \). [Hint: Use the previous exercise to show that \(x^2 \) can be neither < 2 nor > 2.]

Solution.