Math 814 HW 2

September 29, 2007

p. 43: 1,4,6,13,15, p. 54 1, 3 (cos z only). $u(x, y) = x^3 - 3xy^2; u(x, y) = x/(x^2 + y^2)$,

p.43, Exercise 1. Show that the function $f(z) = |z|^2 = x^2 + y^2$ has a derivative only at the origin.

On the region $U = \mathbb{C} - \{0\}$ we have $\bar{z} = f(z)/z$. If $f(z)$ were analytic at some $w \in U$ then \bar{z}, being the product of two functions analytic at w, would itself be analytic at w, which we know is false.

Consider now $w = 0$. Let $\epsilon > 0$. If $|z| < \epsilon$ then

$$\frac{|f(z) - f(0)|}{|z - 0|} = |z| < \epsilon,$$

so $f(z)$ is analytic at 0.

p.43, Exercise 4. Show that $(\cos z)' = -\sin z$ and $(\sin z)' = \cos z$.

There are two methods:

$$(\cos z)' = \frac{1}{2}(e^{iz} + e^{-iz})' = \frac{i}{2}(e^{iz} - e^{-iz}) = -\sin z,$$

and

$$\left(\sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!}\right)' = \sum_{n=0}^{\infty} \frac{(-1)^n 2n \cdot z^{2n-1}}{(2n)!} = \sum_{n=1}^{\infty} \frac{(-1)^n z^{2n-1}}{(2n - 1)!} = -\sin z.$$

It is similar for $(\sin z)'$.

1
p.43, Exercise 6. Describe the following sets:

\begin{align*}
\{ z : e^z = i \} &= \left(2\mathbb{Z} + \frac{1}{2} \right) \pi i \\
\{ z : e^z = -1 \} &= \left(2\mathbb{Z} + 1 \right) \pi i \\
\{ z : e^z = -i \} &= \left(2\mathbb{Z} - \frac{1}{2} \right) \pi i \\
\{ z : \cos z = 0 \} &= \left(\mathbb{Z} + \frac{1}{2} \right) \pi \\
\{ z : \sin z = 0 \} &= \mathbb{Z} \pi.
\end{align*}

p.43, Exercise 13. Let \(U = \mathbb{C} - \mathbb{R}_{\leq 0} \). Find all analytic functions \(f(z) \) on \(U \) such that \(z = (f(z))^n \).

Every branch of \(\log z \) is of the form \(\log z = \text{Log}(z) + 2k\pi i \) for some \(k \in \mathbb{Z} \), where \(\text{Log}(z) \) is the principal branch. Hence we have

\[z^{1/n} = e^{\log(z)/n} = e^{(\text{Log}(z)+2k\pi i)/n} = e^{\text{Log}(z)/n} \cdot e^{2k\pi i/n}. \]

The numbers \(e^{2k\pi i/n} \) are precisely the \(n \)th roots of unity; they depend only on the remainder of \(k \) modulo \(n \). They are also the \(n \) distinct powers of \(\zeta = e^{2\pi i/n} \). So the branches of \(z^{1/n} \) on \(U \) are

\[\zeta^k \cdot e^{\text{Log}(z)/n}, \quad k = 0, 1, \ldots, n - 1 \]

and are all constant multiples of each other.

p.43, Exercise 15. Fix \(r > 0 \). Let \(A \) be the image under \(e^{1/z} \) of the punctured disk \(\{ z : 0 < |z| < r \} \). Describe \(A \).

The image of the punctured disk under \(1/z \) is the infinite annulus

\[B = \{ z : r^{-1} < |z| \} \]

and \(A \) is the image of \(B \) under \(e^z \). I claim the image of \(A \) is \(\mathbb{C} - \{ 0 \} \), regardless of \(r \). To see this, we have to prove that for \(w \neq 0 \), the equation

\[e^z = w \]

has a solution \(z \in B \). Write \(w = |w|e^{i\theta} \). We must find \(z = x + iy \) such that \(x^2 + y^2 > r^{-1} \) and

\[e^x e^{iy} = |w|e^{i\theta}. \]
So we want
\[e^x = |w|, \quad y = \theta + 2k\pi, \]
for some \(k \in \mathbb{Z} \). If we take \(x = \log |w| \) and choose \(k \) large enough that
\[(\log |w|)^2 + (\theta + 2k\pi)^2 > r^{-1}, \]
then \(z = x + iy \) works.

Another way to see this is to write \(z = \rho e^{i\theta} \) and consider the image of rays from the origin with fixed \(\theta \) and \(0 < \rho < r \). You get spirals that fill up the plane with 0 removed.

Additional Comment: The result shows that any arbitrarily small punctured neighborhood of 0 is sent by \(e^{1/z} \) to the entire punctured plane. The point \(z = 0 \) is called an “essential singularity” of \(e^{1/z} \) and this is an example of the Great Picard Theorem (p. 300 in the text).

p.54, Exercise 1. Find the image of \(\{ z : \Re z < 0, |\Im z| < \pi \} \) under \(e^z \).

We have seen that the line \(x = c \) is sent by \(e^z \) to a circle of radius \(e^c \). Any segment of the line of length \(2\pi \) is sent to the entire circle. The region is made out of such segments, so its image is the punctured disk
\[\{ w : 0 < |w| < 1 \}. \]

p.54, Exercise 3. Discuss the mapping properties of \(\cos z \).

We have
\[\cos z = \cos x \cosh y - i \sin x \sinh y = u + iv. \]
First consider the image of the vertical lines \(x = a \in [0, 2\pi) \).
- If \(a = 0 \), the image is \([1, \infty)\).
- If \(a = \pi \), the image is \((-\infty, -1]\).
- If \(a = \pi/2 \) or \(a = 3\pi/2 \), the image is \(i\mathbb{R}\).
- If \(a \) is none of the above, then
\[\frac{u^2}{\cos^2 a} - \frac{v^2}{\sin^2 a} = \cosh^2 y - \sinh^2 y = 1. \]
This is a hyperbola with asymptotes \(y = \pm \tan a \).
Next, consider the image of the horizontal lines $y = b$, for any $b \in \mathbb{R}$. If $b = 0$, the image is $[-1, 1]$. If $b \neq 0$, then
\[
\frac{u^2}{\cosh^2 b} + \frac{v^2}{\sinh^2 b} = \cos^2 x + \sin^2 x = 1.
\]
This is an ellipse with foci at ± 1 and eccentricity $\epsilon = \sech b$. The foci are the same for every b. For large b we have $\epsilon \sim 1$ and the ellipse is nearly a circle: the difference between the foci is negligible from far away. These ellipses for $y = \text{constant}$ are perpendicular to the hyperbolas coming from lines $x = \text{constant}$.

So much for the images of horizontal and vertical lines. The inverse images of horizontal and vertical lines are the level curves of u and v. Here the picture is identical to that of $\sin z$ drawn in class, but shifted horizontally by $\pi/2$.

Extra Exercises. For $u(x, y) = x^3 - 3xy^2$ and $u(x, y) = x/(x^2 + y^2)$,

a) find a harmonic conjugate $v(x, y)$,

b) write the function $u(x, y) + iv(x, y)$ in terms of z,

c) sketch the level curves of $u(x, y)$ and $v(x, y)$.

The harmonic conjugates are
\[
v = 3x^2y - y^3, \quad \text{and} \quad v = \frac{y}{x^2 + y^2},
\]
and we have
\[
u + iv = z^3, \quad \text{and} \quad u + iv = \frac{1}{z},
\]
respectively. One brute-force way to find these is to substitute
\[
x = \frac{z + \bar{z}}{2}, \quad y = \frac{z - \bar{z}}{2i}
\]
into $u(x, y) + iv(x, y)$ and simplify until \bar{z} disappears, which it will, as long as u, v satisfy the Cauchy-Riemann equations.

The level curves of $u = x^3 - 3xy^2$ are obtained as follows. The critical level curve is $u = 0$, which is three lines $x = 0, x = \pm \sqrt{3}y$, dividing the plane into six equal sectors. A level curve for $u = c \neq 0$ consists of three smooth approximations to the sharp corner in alternate sectors. The level curves of v are obtained by rotating the level curves of u by $\pi/2$. Remarkably, when you do this, the rotated curves are orthogonal to the original curves.
The level curves of \(u(x, y) = x/(x^2 + y^2) \) are obtained as follows. First, since \((1/z)' = -1/z^2 \) has no zeros, there are no critical points, except at \(z = 0 \). The level curve \(u = 1/2c \) is the circle with radius \(|c| \) and center \((c, 0) \). As \(c \) varies, we get the family of all circles tangent to \(\mathbb{R}i \) at 0. The level curves of \(v \) are the circles tangent to \(\mathbb{R} \) at 0, and are orthogonal to the previous circles.