Exercise 5. Give the power series expansion of \(\log z \) about \(z = i \) and find its radius of convergence.

For any nonzero \(a \in \mathbb{C} \), we have

\[
\frac{1}{z} = \frac{1}{a} \cdot \frac{1}{1 + \frac{z-a}{a}} = \sum_{n=0}^{\infty} \frac{(-1)^n}{a^{n+1}} (z-a)^n,
\]

with radius of convergence \(|a| \). Take \(a = i \), antidifferentiate, and remember that \(i^2 = -1 \), \(\log i = \frac{i\pi}{2} \). You get

\[
\log z = \frac{i\pi}{2} - \sum_{n=0}^{\infty} \frac{i^{n+1}}{n+1} (z-i)^{n+1} = \frac{i\pi}{2} - \sum_{n=1}^{\infty} \frac{(iz+1)^n}{n},
\]

with radius of convergence \(|i| = 1 \).

Exercise 6. Give the power series expansion of \(\sqrt{z} \) about \(z = 1 \) and find its radius of convergence.

There are two branches of \(\sqrt{z} \), differing by a sign, which can be detected from the value \(\pm 1 \) at \(z = 1 \). Choose the branch \(f(z) \) such that \(f(1) = 1 \). For \(n > 0 \), we have (CORRECTED VERSION)

\[
f^{(n)}(1) = (-1)^{n-1} \frac{(2n-2)!}{2^{n-1}(n-1)!}.
\]

(Note: This is better than writing

\[
f^{(n)}(1) = (-1)^{n-1} \frac{1 \cdot 3 \cdots (2n-3)}{2^n},
\]
since the latter is ambiguous at \(n = 1 \). We get
\[
f(z) = 1 + \sum_{n=1}^{\infty} \frac{(-1)^{n-1}(2n-2)!}{2^{2n-1}(n-1)!n!} (z-1)^n = 1 - 2 \sum_{n=1}^{\infty} \frac{1}{2n-1} \binom{2n-1}{n} \left(\frac{1-z}{4} \right)^n
\]
and the radius of convergence \(R \) is the distance to the nearest nonanalytic point, which is \(z = 0 \), so \(R = 1 \).

Exercise 7. In problems 7,9, let \(\gamma_0(t) = e^{it} \), for \(t \in [0, 2\pi] \).

a) \[
\int_{\gamma_0} \frac{e^{iz}}{z^2} \, dz = 2\pi i \cdot f'(0),
\]
where \(f(z) = e^{iz} \). So the integral is \(2\pi i \cdot i = -2\pi \).

b) \[
\int_{a+r\gamma_0} \frac{dz}{z-a} = 2\pi i.
\]

c) \[
\int_{\gamma_0} \frac{\sin z}{z^3} \, dz = 2\pi i \cdot f''(0),
\]
where \(f(z) = \sin z \). Hence the integral is \(-2\pi i \cdot \sin 0 = 0 \).

d) The integral
\[
\int_{1+\frac{1}{2}\gamma_0} \frac{\log z}{z^n} \, dz
\]
is zero, since \(z^{-n} \log z \) is analytic in a disk containing the path.

Exercise 9.

c) First,
\[
\frac{1}{z^2 + 1} = \frac{1}{2i} \left[\frac{1}{z-i} - \frac{1}{z+i} \right].
\]
Both \((z \pm i)^{-1} \) integrate to \(2\pi i \) around \(2\gamma_0 \). Hence
\[
\int_{2\gamma_0} \frac{dz}{z^2 + 1} = \frac{1}{2i} [2\pi i - 2\pi i] = 0.
\]
Alternatively, note that
\[
M(z) = \frac{z-i}{z+i}
\]
maps \(\mathbb{C} - [-i, i] \) to \(\mathbb{C} - \mathbb{R}_{\leq 0} \), so \(\text{Log} M(z) \) is analytic on the region \(\mathbb{C} - [-i, i] \) containing \(2\gamma_0 \). Moreover,

\[
(\text{Log} M(z))' = \frac{1}{z - i} - \frac{1}{z + i}.
\]

Hence the integral is zero.

d)

\[
\int_{\gamma_0} \frac{\sin z}{z} \, dz = 2\pi i \cdot \sin(0) = 0.
\]

Alternatively, note that \(\frac{\sin z}{z} \) is entire, hence has zero integral over every closed path in \(\mathbb{C} \).

Exercise 12. Since \(\sec z \) is even and \(\sec 0 = 1 \), it follows that

\[
\sec z = 1 + \sum_{k=1}^{\infty} \frac{E_{2k}}{(2k)!} z^{2k},
\]

where the radius of convergence is the distance from 0 to the nearest non-analytic point(s) of \(f(z) = \sec z \), which is \(\pi / 2 \), and \(E_{2k} = f^{2k}(0) \).

Multiplying the series for \(\sec z \) and \(\cos z \), we get

\[
1 = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} (-1)^{n-k} \frac{E_{2k}}{(2k)! (2n - 2k)!} \right) z^{2n}.
\]

Comparing coefficients of \(z^{2n} \) and multiplying by \((2n)! \), we get the recursive formula

\[
\sum_{k=0}^{n} (-1)^{n-k} E_{2k} \binom{2n}{2k} = 0.
\]

We have

\[
E_0 = 1, \quad E_2 = 1, \quad E_4 = 5, \quad E_6 = 61, \quad E_8 = 1385.
\]

Exercise 13. We have

\[
\frac{e^z - 1}{z} = \sum_{k=0}^{\infty} \frac{z^k}{(k+1)!}.
\]
with infinite radius of convergence. The series
\[f(z) = \frac{z}{e^z - 1} = \sum_{k=0}^{\infty} \frac{a_k}{k!} z^k \]
has radius of convergence \(R \) equal to the distance from 0 to the nearest zero(s) of \(e^z - 1 \), which are \(\pm 2\pi i \), so \(R = 1 \).

Multiplying these two series, we get
\[1 = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \frac{a_k}{k!(n-k+1)!} \right) z^n. \]
Comparing coefficients of \(z^n \) and multiplying by \((n + 1)!\), we get the recursive formula
\[\sum_{k=0}^{n} a_k \binom{n+1}{k} = 0. \]
Taking \(n = 1 \) and using \(a_0 = f(0) = 1 \), we find that \(a_1 = -\frac{1}{2} \). The function
\[\tilde{f}(z) = f(z) + \frac{z}{2} = \frac{z(e^z + 1)}{2(e^z - 1)} = 1 + \sum_{k=2}^{\infty} \frac{a_k}{k!} z^k \]
is even, so \(a_k = 0 \) for \(k \) odd, \(k > 1 \). Let \(B_{2n} = (-1)^{n-1} a_{2n} \), so that
\[\frac{z}{e^z - 1} = 1 - \frac{z}{2} + \sum_{n=1}^{\infty} (-1)^{n-1} \frac{B_{2n}}{(2n)!} z^{2n}. \]
We have
\[B_2 = \frac{1}{6}, \quad B_4 = \frac{1}{30}, \quad B_6 = \frac{1}{42}, \quad B_8 = \frac{1}{30}, \quad B_{10} = \frac{5}{66}. \]

Exercise 14. Find the power series of \(\tan z \) in terms of Bernoulli numbers. Replace \(z \) by \(2iz \) in the function \(\tilde{f}(z) \) of the previous problem. We get
\[\tilde{f}(2iz) = \frac{iz(e^{2iz} + 1)}{e^{2iz} - 1} = \frac{iz(e^{iz} + e^{-iz})}{e^{iz} - e^{-iz}} = z \cot z. \]
Replacing \(z \) by \(2iz \) in the power series for \(\tilde{f}(z) \), we get
\[z \cot z = 1 - \sum_{n=1}^{\infty} 4^n \frac{B_{2n}}{(2n)!} z^{2n}. \]
Now,

\[
\cot 2z = \frac{\cos 2z}{\sin 2z} = \frac{\cos^2 z - \sin^2 z}{2 \sin z \cos z} = \frac{1}{2} (\cot z - \tan z),
\]

so

\[
z \tan z = z \cot z - 2z \cot 2z = \left[1 - \sum_{n=1}^{\infty} \frac{4^n B_{2n} z^{2n}}{(2n)!} \right] - \left[1 - \sum_{n=1}^{\infty} \frac{4^{2n} B_{2n} z^{2n}}{(2n)!} \right] = \sum_{n=1}^{\infty} \frac{4^n (4^n - 1) B_{2n}}{(2n)!} z^{2n}.
\]

Hence we get

\[
\tan z = \sum_{n=1}^{\infty} \frac{4^n (4^n - 1) B_{2n}}{(2n)!} z^{2n-1}.
\]