p. 87, no. 6. Let f be analytic on $D = B(0, 1)$ and suppose $|f(z)| \leq 1$ on D. Show that $|f'(0)| \leq 1$.

Proof: Let $0 < r < 1$ and let $\gamma_r(t) = re^{it}$ for $0 \leq t \leq 2\pi$. By the Cauchy Integral Formula, we have

$$f'(0) = \frac{1}{2\pi i} \int_{\gamma_r} \frac{f(w)}{w^2} \, dw,$$

so

$$|f'(0)| \leq \frac{1}{2\pi} \cdot \frac{1}{r} \cdot 2\pi r = \frac{1}{r}.$$

Taking the limit as $r \to 1$, we have $|f'(0)| \leq 1$. ■

p. 87, no. 7. Let $\gamma(t) = 1 + e^{it}$ for $0 \leq t \leq 2\pi$ and let $n \in \mathbb{N}$. Find

$$\int_{\gamma} \left(\frac{z}{z - 1} \right)^n \, dz.$$

Apply C.I.F. to $f(z) = z^n$, to get

$$\int_{\gamma} \left(\frac{z}{z - 1} \right)^n \, dz = \frac{2\pi i}{(n-1)!} \cdot f^{n-1}(1) = 2n\pi i.$$
You can also do this without C.I.F., by computing directly:

\[
\int_\gamma \left(\frac{z}{z-1} \right)^n \, dz = \int_0^{2\pi} \left(\frac{1 + e^{it}}{e^{it}} \right)^n \cdot i e^{it} \, dt \\
= i \int_0^{2\pi} (1 + e^{-it})^n \cdot e^{it} \, dt \\
= i \int_0^{2\pi} \left(1 + ne^{-it} + \left(\frac{n}{2} \right) e^{-2it} + \cdots \right) \cdot e^{it} \, dt \\
= 2n\pi i,
\]

since \(\int_0^{2\pi} e^{kit} \, dt = 0 \) for \(k \) a nonzero integer.

p.96, no. 8a. We must integrate \((z - a)^{-1}\) and \((z - b)^{-1}\) over the path \(\gamma \), which can be written as a sum of six paths, two of which are closed and have \(a, b \) in their \(\infty \)-components, hence have zero integral and two pairs of non-closed paths. One pair starts at the leftmost crossing point, each goes around \(a \) in opposite directions, and they meet at the middle crossing point. The other one pair starts at the middle crossing point, each goes around \(b \) in opposite directions, and they meet at the rightmost crossing point.

Integrating over the paths around \(a \) is the same as integrating \((z - a)^{-1}\) over \(\gamma_1 - \gamma_2 \), where \(\gamma_1(t) = a + re^{it} \) for \(0 \leq t \leq \pi \) and \(\gamma_2(t) = a + re^{it} \) for \(\pi \leq t \leq 2\pi \), for some small \(r > 0 \). One computes

\[
\int_{\gamma_1} \frac{dz}{z - a} = \pi i = \int_{\gamma_2} \frac{dz}{z - a},
\]

hence \(n(\gamma, a) = 0 \). Similarly, \(n(\gamma, b) = 0 \).

p.96, no. 10. Compute \(\int_\gamma (1 + z^2)^{-1} \) for all closed paths not passing through \(\pm i \).

\[
\int_\gamma \frac{dz}{1 + z^2} = \frac{1}{2i} \int_\gamma \left(\frac{1}{z - i} - \frac{1}{z + i} \right) \, dz \\
= \frac{1}{2i} \cdot 2\pi i \cdot (n(\gamma, i) - n(\gamma, -i)) \\
= \pi \cdot (n(\gamma, i) - n(\gamma, -i)).
\]

p.96, no. 11. The Cauchy integral formula can be written

\[
\int_\gamma \frac{f(z)}{(z - a)^{n+1}} \, dz = 2\pi i \cdot n(\gamma, a) \cdot \frac{f^{(n)}(a)}{n!}.
\]
Since \((e^z - e^{-z})'''(0) = 2\), we have
\[
\int_\gamma \frac{e^z - e^{-z}}{z^4} \, dz = \frac{2\pi i}{3} \cdot n(\gamma, 0),
\]
giving the answers
a) \(\frac{2\pi i}{3}\),
b) \(\frac{4\pi i}{3}\),
c) \(\frac{4\pi i}{3}\).

p.110, no. 1.

b) \(\cos z/z = 1/z + \text{(higher powers)}\) has a simple pole at \(z = 0\).
c) \(f(z) = (\cos z - 1)/z = -z/2 + \text{(higher powers)}\) has a removable singularity at \(z = 0\) and \(f(0) = 0\).
h) \(1/(1 - e^z) = -1/z + \text{(higher powers)}\) has a simple pole at \(z = 0\).
i) Since \(\sin z/z\) is entire, the function \(z \sin(1/z)\) has an essential singularity at \(z = 0\). We consider the function \(g(z) = \sin z/z\) for \(z\) large. We first invoke the Little Picard Theorem, which asserts that in any neighborhood \(|z| > R\) of \(\infty\), we have either \(g(U) = \mathbb{C}\) or \(g(U) = \mathbb{C} \cup \{w\}\), for some \(w \in \mathbb{C}\). I claim that in this case it is the former. Assume there is such a \(w\). Then since \(g(\bar{z}) = \overline{g(z)}\), it follows that \(w\) is real. We have
\[
g(x+iy) = u+iv = \frac{x \sin x \cosh y + y \cos x \sinh y}{x^2 + y^2} + i \frac{x \cos x \sinh y - y \sin x \cosh y}{x^2 + y^2}.
\]
It is easy to see that \(g(\mathbb{R}) = [-2/3\pi, 1]\) and \(g(i\mathbb{R}) \supset [1, \infty]\). Hence this hypothetical \(w\) must lie in \((-\infty, -2/3\pi]\). Now, \(g\) is real on the curve
\[
x \cos x \sinh y - y \sin x \cosh y = y \left(\frac{x \cos x \sinh y}{y} - \sin x \cosh y\right) = 0.
\]
Since we already know \(g(\mathbb{R})\), we set the factor in \(\ldots\) equal to zero, and get the curve
\[
C : \ y \coth y = x \cot x.
\]
This curve \(C\) meets the \(x\)-axis at the solutions of \(\tan x = x\), which form a sequence \(z_n, n \in \mathbb{Z}\), such that \(z_n \to (n - \frac{1}{2})\pi\) as \(|n| \to \infty\). On \(C\), we have
\[
g|_C = u|_C = \frac{\sin x \cosh y}{x} = \frac{\cos x \sinh y}{y}.
\]
For n a large positive integer, let $x_n = 3\pi/4 - 2n\pi$ and let y_n satisfy $y_n \coth y_n = -x_n$. (Note that $y \coth y$ is unbounded, so such y_n exists.) Then since $\cot x_n = -1$, the point (x_n, y_n) lies on C. Let A_n be the arc on C from (x_n, y_n) to the x-axis and let $(z_n, 0)$ be the point where A_n meets the x-axis. Since A_n is connected, the set $g(A_n)$ is an interval. We have

$$u(x_n, y_n) = \cosh y_n \sqrt{2} x_n = -\sinh y_n \sqrt{2} y_n,$$

and

$$u(z_n, 0) = \cos z_n \approx \cos(\pi/2 + n\pi) = 0.$$

Hence $u(A_n)$ contains the interval $[-\sinh y_n/\sqrt{2} y_n, \epsilon]$, where $\epsilon > 0$ is small. For large enough n, this will overlap with our previously obtained interval $[-2/3\pi, \infty)$. So for large n we now have $[-\sinh y_n/\sqrt{2} y_n, \infty)$ in the image of g. Since $y_n \to \infty$, we have $-y_n^{-1} \sinh y_n \to -\infty$, so the entire negative real axis is covered. Whew!

p.110, no. 5. Let $a_n = \pi/2 + n\pi$. Since $\tan z = \sin z / \cos z$ and $(\cos z)' = -\sin z$, it follows that $\tan z$ has a simple pole at each a_n, with residue -1. Hence the singular part of $\tan z$ at a_n is $-1/(z - a_n)$.

p.110, no. 13. a) If $f(z)$ is entire and $\lim_{z \to \infty} f(z)$ exists and is finite, then f is bounded, so f is constant, by Liouville’s theorem.

b) If $f(z)$ is entire and has a pole of order m at ∞, then $f(1/z)$ has a pole of order m at 0. Hence $f(z) = z^{-m} g(z)$, where $g(z)$ is analytic and nonzero at 0, so $f(z) = z^{-m} g(1/z)$ and $g(1/z)$ is bounded, for $|z|$ large, say $|g| \leq M$. Then $|f(z)| \leq M |z|^{-m}$ for $|z|$ large, so f is a polynomial of degree m, by the extension of Liouville from the first exam.

c) A rational function $P(z)/Q(z)$, with $P, Q \in \mathbb{C}[z]$, is bounded for $|z|$ large if and only if $\deg P \leq \deg Q$.

d) A rational function $P(z)/Q(z)$ has a pole of order m at ∞ iff $P(z)/Q(z) = z^m g(z)$, where $g(z)$ is a rational function bounded near ∞. This means $\deg P = m + \deg Q$.
