Exercise 1. Let k be a finite field of cardinality q, and let M be the group of affine transformations of a line over k. Concretely, M is the semidirect product of the additive group of k and the multiplicative group of k, with the latter acting on the former by multiplication. Let $\psi: k \to \mathbb{C}^\times$ be a nontrivial character of the additive group of k. Prove the following.

a) The induced representation $\Psi = \text{Ind}_k^G \psi$ is irreducible and its isomorphism class does not depend on the choice of nontrivial character ψ of k.

b) If W is an irreducible representation of G and W is not isomorphic to Ψ then $\dim W = 1$ and the action of G on W factors through a character of $G/k = k^\times$.

[Remarks: The group M may be realized inside the upper triangular subgroup of $\text{GL}_2(k)$, where it plays an important role in the rep thy of GL_2. In particular, the “Kirillov model”, used in automorphic forms, is based on restriction of GL_2-representations to M.]

Exercise 2. Verify Theorem 4.3 in the Representation Theory notes (which is stated there without proof), for $n = 4$.

Exercise 3. Let G be a finite group, H a subgroup of G and $\chi: H \to \mathbb{C}^\times$ a character of H. Prove that

$$\det(g, \text{Ind}_H^G \chi) = \text{sgn}(g) \cdot \chi(T(g)),$$

where $T: G \to H/[H,H]$ is the transfer map and $\text{sgn}(g)$ is the sign of the permutation of g on G/H.

Exercise 4. Suppose (ρ, V) and (ρ', V') are irreducible \mathbb{C}-representations of groups G and G' respectively.

a) Use characters to prove that the outer tensor product $V \boxtimes V'$ is irreducible for $G \times G'$.

b) Show that every irreducible representation of $G \times G'$ is of the form $V \boxtimes V'$ as in a).

Exercise 5. Prove the Peter-Weyl theorem for finite groups.

Exercise 6. Let G be a finite group acting on a set X, let V_X be the permutation representation over \mathbb{C}, and let V_X^0 be the functions in V_X whose sum over X is zero. Use Mackey’s theorem to prove that V_X^0 is irreducible if and only if G is 2-transitive on X.

Exercise 7. Prove Prop. 6.2 in the Rep Thy notes.