In these exercises, \(g = \mathfrak{sl}_2 \). The root decomposition is \(g = \mathfrak{n} \oplus \mathfrak{t} \oplus \mathfrak{n} \), where
\[
\begin{align*}
\mathfrak{n} &= \mathbb{C}f, \\
\mathfrak{t} &= \mathbb{C}h, \\
\mathfrak{n} &= \mathbb{C}e
\end{align*}
\]
and the basis vectors \(e, h, f \) satisfy the relations
\[
[h, e] = 2e, \quad [e, f] = h, \quad [f, h] = 2f.
\]

Exercise 1. In the enveloping algebra \(U(g) \) we have the Casimir element
\[
c = ef + \frac{h^2}{2} + fe.
\]
Show that \(c \) is in the center of \(U(g) \) and compute the scalar by which \(c \) acts on the Verma module \(M(\lambda) \), for \(\lambda \in \mathfrak{t}^* \).

Exercise 2.

a) Show that \(M(\lambda) \) is irreducible unless \(\langle \lambda, h \rangle \in \mathbb{Z}_{\geq 0} \).

b) Suppose \(\langle \lambda, h \rangle \in \mathbb{Z}_{\geq 0} \) and let \(L(\lambda) \) be the unique simple quotient of \(M(\lambda) \). Show that we have an exact sequence
\[
0 \to M(-\lambda - 2\delta) \to M(\lambda) \to L(\lambda) \to 0,
\]
where \(\delta = (1/2)\alpha \) is the fundamental dominant weight.

Exercise 3. Let \(W \) be a vector space with basis \(\{ w_i : i \in \mathbb{Z} \} \).

a) Show that for any complex number \(\nu \), the formulas
\[
e \cdot w_i = \left(\frac{\nu + i}{2} \right) w_{i+2}, \quad h \cdot w_i = iw_i, \quad f \cdot w_i = \left(\frac{\nu - i}{2} \right) w_{i-2}
\]
define a representation of \(g \) on \(W \). We denote this representation by \(W(\nu) \).

b) Compute the action of the Casimir operator \(c \) on \(W(\nu) \).

c) The subspaces \(W_+(\nu) = \text{span}\{ w_i : i \text{ even} \} \) and \(W_-(\nu) = \text{span}\{ w_i : i \text{ odd} \} \) are clearly invariant under \(g \). Show that if \(\nu \) is not an integer of parity \(\pm \) then \(W_\pm(\nu) \) is irreducible for \(g \).

Note that the \(W_\pm(\nu) \) are not highest weight modules. They arise from the action of \(\text{SL}_2(\mathbb{R}) \) on the space of smooth functions \(f : \mathbb{R}^2 \setminus (0,0) \to \mathbb{C} \) satisfying \(f(tx, ty) = t^{-\nu}f(x, y) \) for \(t > 0 \). These are the principal series representations of \(\text{SL}_2(\mathbb{R}) \). See David Vogan’s notes www.math.mit.edu/~dav/sl2rev.pdf.

Exercise 4. Let \(V = \mathbb{C}[x_1, \ldots, x_n] \) be the polynomial algebra in \(n \) variables and let \(\partial_i = \partial/\partial x_i \) be the partial derivatives. We have the Euler and Laplace differential operators on \(V \), defined by
\[
D = \sum_i x_i \partial_i, \quad \Delta = \sum_i \partial_i^2.
\]
and we let $Q : V \to V$ be the operator of multiplication by the quadratic form $q = x_1^2 + x_2^2 + \cdots + x_n^2$.

a) Find scalars a and b such that

$$e \mapsto aQ, \quad h \mapsto D + \frac{n}{2}, \quad f \mapsto b\Delta$$

defines a representation of \mathfrak{g} on V.

Note there are no highest weight vectors in V.

b) The special orthogonal group SO_n (preserving the quadratic form q) also acts on V (which is the space of polynomial functions on \mathbb{C}^n). Show that this action of SO_n commutes with the \mathfrak{sl}_2 action.

c) The lowest weight vectors for \mathfrak{g} form the subspace $H = \ker \Delta$ of harmonic polynomials, which are graded by degree: $H = \bigoplus H_j$. Show that SO_n preserves each H_j and that H_j is irreducible for SO_n. What is the highest weight of H_j for the Lie algebra $\mathfrak{so}_n(\mathbb{C})$?

d) Regarding V as a representation of the Lie algebra $\mathfrak{so}_n(\mathbb{C}) \oplus \mathfrak{g}$, the subspaces

$$V_+ = \bigoplus_{i,j \geq 0} q^i H_{2j}, \quad V_- = \bigoplus_{i,j \geq 0} q^i H_{2j+1}$$

of even and odd degree polynomials are invariant. Are V_\pm irreducible for $\mathfrak{so}_n(\mathbb{C}) \oplus \mathfrak{g}$?

For more on this see the book by Roger Howe and Eng-chye Tan, “Harmonic Analysis: Applications of $\text{SL}(2, \mathbb{R})$.”

Exercise 5. Take a nonzero $\eta \in \mathbb{C}$, and let $\mathbb{C}(\eta)$ be the one-dimensional $\mathcal{U}(\mathfrak{n})$-module \mathbb{C} on which $e \cdot z = \eta z$. The induced module

$$\mathcal{Y}(\eta) = \mathcal{U}(\mathfrak{g}) \otimes \mathcal{U}(\mathfrak{n}) \mathbb{C}(\eta)$$

is the analogue of the Gelfand-Graev representation for $\mathcal{U}(\mathfrak{g})$. Now for any $\lambda \in \mathbb{C}$, consider the quotient

$$\mathcal{Y}(\eta, \lambda) := \mathcal{Y}(\eta)/(c - \lambda)\mathcal{Y}(\eta),$$

on which the Casimir element c acts via the scalar λ. Let $v \in \mathcal{Y}(\eta, \lambda)$ be the image of $1 \otimes 1$ from $\mathcal{Y}(\eta)$.

a) Show that the linear map $\mathbb{C}[t] \to \mathcal{Y}(\eta, \lambda)$ given by $t^i \mapsto h^i \cdot v$ is bijective.

b) By a), the \mathfrak{g}-action on $\mathcal{Y}(\eta, \lambda)$ transfers to the space of polynomials $\mathbb{C}[t]$. Find explicit formulas for this action of e, f, h on $\mathbb{C}[t]$.

c) Using the formulas in b), prove that $\mathcal{Y}(\eta, \lambda)$ is an irreducible representation of $\mathcal{U}(\mathfrak{b})$, hence of $\mathcal{U}(\mathfrak{g})$.

d) Show that h has no eigenvectors in $\mathcal{Y}(\eta, \lambda)$.

For extensions of this to general semisimple Lie algebras, see Bert Kostant’s paper “On Whittaker Vectors and Representation Theory” Inventiones mathematicae 48 (1978): 101-184.