In these exercises, \(g \) is a simple complex Lie algebra with Cartan subalgebra \(t \), positive roots \(R^+ \) and simple roots \(\{\alpha_1, \ldots, \alpha_n\} \subset R^+ \). An \(\mathfrak{sl}_2 \)-\textbf{triple} in \(g \) is a triple \((e, h, f)\) of elements in \(g \) satisfying the relations
\[
[h, e] = 2e, \quad [h, f] = -2f, \quad [e, f] = h.
\]
For each \(i = 1, \ldots, n \), let \((e_i, h_i, f_i)\) be the \(\mathfrak{sl}_2 \)-triple arising from the embedding \(\phi_{\alpha_i} : \mathfrak{sl}_2 \rightarrow g \). For each integer \(k \geq 0 \), \(V_k \) is the irreducible \(\mathfrak{sl}_2 \)-representation of dimension \(k + 1 \).

Exercise 1. (The principal \(\mathfrak{sl}_2 \))

1. Let \(h \in t \) be defined by the condition \(\langle \alpha_i, h \rangle = 2 \) for \(i = 1, \ldots, n \). Write \(h = \sum r_i h_i \), and set \(e = \sum_{i=1}^n e_i \) and \(f = \sum r_i f_i \). Prove the following.
 a) The triple \((e, h, f)\) is an \(\mathfrak{sl}_2 \)-triple. [Hint: the difference of simple roots is never a root.]
 b) The restriction to \(s \) of the adjoint representation of \(g \) has the form
 \[
 g|_s = \bigoplus_{i=1}^n V_{2m_i}
 \]
 where the \(m_i \) are positive integers whose sum \(\sum m_i = |R^+| \). (Hint: consider the centralizer of \(h \) in \(g \).)
 c) An irreducible self-dual representation \(V \) of \(g \) is orthogonal if \(\langle \lambda, h \rangle \) is even, and is symplectic if \(\langle \lambda, h \rangle \) is odd. For which \(g \) is every irreducible representation orthogonal?
 d) \(e \) is contained in exactly one Borel subalgebra of \(g \). (See Kostant, thm. 5.6.)
 e) Let \(a \) be the centralizer of \(e \) in \(g \). Then \(\dim a = n \) (easy) and \(a \) is abelian (not so easy-see Kostant, thm 5.7).
 f) For \(g = \mathfrak{sl}_{n+1} \), show that \(e \) is conjugate by a diagonal matrix in \(\text{SL}_{n+1} \) to the Jordan matrix sending each ordered basis vector to the previous one. Compute \(a \) for this Jordan matrix.
 g) If \(g \) has type \(B_k \) or \(C_k \), the embedding \(\mathfrak{sl}_2 \rightarrow s \subset g \) is given by the irreducible representaton \(V_{2k+1} \) or \(V_{2k} \), respectively.

1 For much more information, see chap. 5 in Kostant: *The Principal Three-Dimensional Subgroup and the Betti Numbers of a Complex Simple Lie Group* Amer. J. Math. published during the month I was born.

2 The integers \(m_1, \ldots, m_n \) are called the \textbf{exponents} of \(g \).
Exercise 2. Let G be the simply connected group with Lie algebra \mathfrak{g} and let $T \subset G$ be the maximal torus whose Lie algebra is \mathfrak{t}. Let $\varphi : \text{SL}_2(\mathbb{C}) \to G$ be the map whose derivative sends $\mathfrak{sl}_2 \to \mathfrak{s}$. Using the results from 1, show the following.

a) $\varphi(-I)$ is contained in the center of G.

b) If V is a self-dual irreducible representation of G then $\varphi(-I)$ acts on V by $+1$ if V is orthogonal and -1 if V is symplectic.

c) $\varphi \left(\begin{array}{cc} \star & 0 \\ 0 & \star \end{array} \right)$ is contained in a unique maximal torus T of G.

d) $\varphi \left(\begin{array}{cc} \star & \star \\ 0 & \star \end{array} \right)$ is contained in a unique Borel subgroup of G.

e) $\varphi \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right)$ normalizes T and its image in W is the longest element w_0.

Exercise 3. For the irreducible representation $L(\delta)$, the Weyl dimension formula gives $\dim(L(\delta)) = 2^{\#R^+}$. This suggests there should be a natural bijection between subsets of R^+ and the weights of $L(\delta)$. Indeed, use the Weyl character formula to prove that the character χ_δ of $L(\delta)$ is given by

$$\chi_\delta = e_\delta \prod_{\alpha \in R^+} (1 + e_{-\alpha}).$$

Hint: $e_{w(\delta+\delta)}(t) = e_{w\delta}(t^2)$. Your proof should generalize easily to $L(k\delta)$, for any integer $k \geq 1$.

Exercise 4. For each $\alpha \in R^+$, let $c(\alpha) = \sum c_i$, where $\alpha = \sum c_i \alpha_i$. For each $S \subset R^+$, let $c(S) = \sum_{\alpha \in S} c(\alpha)$, and let $c = C(R^+)$. Show that the restriction of $L(\delta)$ to the principal \mathfrak{sl}_2 is given by

$$L(\delta)|_\mathfrak{s} = \sum_{i=0}^{\lfloor c/2 \rfloor} (n_i - n_{i-1})V_{c-2i},$$

where n_i is the number of subsets $S \subset R^+$ with $c(S) = i$ and $\lfloor c/2 \rfloor$ is the greatest integer $\leq c/2$. Find the numbers n_i for types A_2, B_2 and G_2.

\footnote{It can be shown that $c = \sum_{i=1}^{m_i} \binom{m_i+1}{2}$, where the m_i are the exponents of \mathfrak{g}, cf. exercise 1b.}