MT845 Homework 1

Don’t forget to type Your Name!

Due Monday, September 27

Exercise 1. This exercise shows how to view quaternions as 2×2 complex matrices. View \mathbb{C} as the subring $\{t + xi : t, x \in \mathbb{R}\}$ of \mathbb{H}, and let $M_2(\mathbb{C})$ denote the ring of 2×2 complex matrices. Show the following.

a) Every quaternion $q \in \mathbb{H}$ can be uniquely expressed as $q = \alpha + j\beta$ for some $\alpha, \beta \in \mathbb{C}$.

b) The map $\rho : \mathbb{H} \to M_2(\mathbb{C})$ given by $\rho(\alpha + j\beta) = \begin{bmatrix} \alpha & -\bar{\beta} \\ \beta & \bar{\alpha} \end{bmatrix}$ is an injective ring homomorphism.

c) Show that the image of ρ is the subring of $M_2(\mathbb{C})$ consisting of matrices A for which $AJ = J\bar{A}$, where $J = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$, and \bar{A} is the matrix obtained by complex-conjugating all the entries in A.

d) Show that $\rho(S^3)$ is the group $SU_2(\mathbb{C}) := \left\{ \begin{bmatrix} \alpha & -\bar{\beta} \\ \beta & \bar{\alpha} \end{bmatrix} \in GL_2(\mathbb{C}) : |\alpha|^2 + |\beta|^2 = 1 \right\} \leq SL_2(\mathbb{C})$.

Proof.

Exercise 2. Give an algebraic proof of the formula

$$e^{k\theta/2}e^{j\phi/2} \cdot k \cdot e^{-j\phi/2}e^{-k\theta/2} = (\sin \phi \cos \theta)i + (\sin \phi \sin \theta)j + (\cos \phi)k,$$

which was demonstrated geometrically in class.

Proof.

Exercise 3. Consider the circle $T_c = \{t + xi \in \mathbb{H} : t^2 + x^2 = 1\}$ in S^3. Prove that if $s \in T$ and $s \neq \pm 1$ then the centralizer of s in S^3 is exactly T.

Proof.

Exercise 4. Compute the square of a general quaternion $q = t + xi + yj + zk$. Then use this to show that the conjugacy class $C_0 = \{xi + yj + zk \in \mathbb{H} : x^2 + y^2 + z^2 = 1\}$ consists precisely of the elements of order four in S^3.

Proof.

Exercise 5. Let $G = SO_3(\mathbb{R}) = \{g \in GL_3(\mathbb{R}) : {}^tgg = I \text{ and } \det g = 1\}$. Let T be the subgroup of G fixing the first basis vector e_1 in \mathbb{R}^3. Show the following.

a) $T \simeq SO_2(\mathbb{R})$ and $N_G(T) \simeq O_2(\mathbb{R})$.

b) G acts transitively on the unit sphere in \mathbb{R}^3.

Proof.
c) Every element of \(G \) is rotation about some axis and is conjugate to an element of \(T \). [Hint: show first that \(\det(I - g) = 0 \) for all \(g \in G \).]

d) Two elements \(s, t \in T \) are conjugate in \(G \) if and only if \(s = t^{\pm 1} \).

e) The elements of order two in \(G \) form a single conjugacy class. Describe these elements geometrically.

Proof.

Exercise 6. The group \(G = SL_2(\mathbb{R}) \) of real \(2 \times 2 \) matrices whose determinant = 1 has subgroups

\[
K = SO_2(\mathbb{R}) \cong S^1, \quad A = \left\{ \begin{bmatrix} a & 0 \\ 0 & a^{-1} \end{bmatrix} : a > 0 \right\} \cong \mathbb{R}^*_+, \quad N = \left\{ \begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix} : x \in \mathbb{R} \right\} \cong \mathbb{R}.
\]

Show that the map \(K \times A \times N \to G \) is a bijection.

[This is called the \textbf{Iwasawa decomposition}. It shows that \(SL_2(\mathbb{R}) \) is homeomorphic to \(S^1 \times \mathbb{R}^2 \). In particular, \(SL_2(\mathbb{R}) \) is a connected, non-compact group.]

Exercise 7. Use the previous exercise to prove that the group \(GL_2(\mathbb{R})^+ = \{ g \in GL_2(\mathbb{R}) : \det g > 0 \} \) is connected. Deduce from this that \(GL_2(\mathbb{R}) \) has exactly two connected components, according to the sign of the determinant.

Exercise 8. Prove that \(S^3 = T_iT_jT_k \). That is, prove that every element \(q \in S^3 \) may be written as

\[
q = e^{i\alpha} \cdot e^{i\beta} \cdot e^{i\gamma}
\]

for some \(\alpha, \beta, \gamma \in [0, 2\pi] \).

Proof.