Exercise 1. Let G be a Lie group and let $H \subset G$ be a closed subgroup. Give G/H the topology whose open sets are those with open pre-image in G. Prove that G/H is Hausdorff. (Given distinct points $x, y \in G/H$ there are disjoint open sets U, V in G/H such that $x \in U$ and $y \in V$.)

Exercise 2. Complex projective space \mathbb{CP}^n is the set of lines in \mathbb{C}^{n+1}. Let $[z_0, z_1, \ldots, z_n]$ be the complex line through the vector $(z_0, z_1, \ldots, z_n) \in \mathbb{C}^{n+1}$. A set $V \subset \mathbb{CP}^n$ is open iff the set of all vectors in \mathbb{C}^{n+1} belonging to lines in V is open in $\mathbb{C}^{n+1} = \mathbb{R}^{2n+2}$. Let $V_i = \{[z_0, z_1, \ldots, z_n] \in \mathbb{CP}^n : z_i \neq 0\}$. Show that \mathbb{CP}^n is a $2n$-dimensional manifold by defining maps $\varphi_i : \mathbb{R}^{2n} \to V_i$ making a chart $\{(\varphi_i, \mathbb{R}^{2n}, V_i) : i = 0, 1, \ldots, n\}$ on \mathbb{CP}^n, and compute the transition functions.

Exercise 3. Let $G = U_n = \{g \in \text{GL}_n(\mathbb{C}) : \bar{g}g = g^{-1}\}$ be the compact unitary group, with maximal torus T consisting of the diagonal matrices in G.

a) Show that T meets every conjugacy class in G.

b) Show that every maximal torus in G is conjugate to T.

Exercise 4. Let U_n and U_1 be embedded in U_{n+1} as

$$
\begin{bmatrix}
U_1 & 0 \\
0 & U_n
\end{bmatrix}.
$$

a) Show that U_{n+1}/U_n is diffeomorphic to S^{2n+1}.

b) Show that $U_{n+1}/(U_1 \times U_n)$ is diffeomorphic to \mathbb{CP}^n.