Proposition I.38

Triangles which are on equal bases and in the same parallels are equal to one another.

Given: Triangle \(\triangle ABC \) and Triangle \(\triangle DEF \) with \(BC = EF \) and both line segments on line \(L_1 \) and points \(A \) and \(D \) fall on line \(L_2 \) and \(L_1 \) is parallel to \(L_2 \).
Claim: Triangle \(\triangle ABC = \triangle DEF \)

Construction Steps:
1. Through point \(B \), let \(BG \) be drawn parallel to \(CA \) \[I.31\]
2. Through point \(F \), let \(FG \) be drawn parallel to \(DE \) \[I.31\].

Proof:
\(GB \) parallel to \(AC \), \(DC \) parallel to \(HF \), \(L_1 \) parallel to \(L_2 \), we have two parallelograms \(GABC \) and \(DHEF \) [definition of parallelogram]. Since \(BC = EF \), we know that parallelograms \(GABC = DHEF \) \[I.36\].
Since \(AB, DF \) are diameters of \(GABC \) and \(DHEF \) respectively, triangle \(\triangle ABC = \frac{1}{2} GABC \), triangle \(\triangle DEF = \frac{1}{2} DHEF \) \[I.34\].
Since parallelogram $GABC$ is equal to parallelogram $DHEF$, therefore triangle $ABC = DEF$ [c.n. 1].

Special Case: If the two triangles are on the same base and within the same parallels [I.37].

Note from discussion:
What if the bases of triangles are on opposite parallels?