Proposition I.44

To a given straight line, to apply, in a given angle, a parallelogram equal to a given triangle.

For the purpose of this proof all equalities will relate to equality of area.

Steps:
1. Construct $BEFG = \triangle C$ in $\angle EBG = \angle D$ [I.42]
2. Extend \(FG \) to \(H \) and let \(AH \parallel BG \) [I.32]
3. Join \(HB \) [Post. 1]
4. Since \(FE \parallel HA \) with transversal \(FH \) then \(\angle AHF + \angle HFE = \angle \angle \) [I.29]
 so, \(\angle BHG + \angle GFE < \angle \angle \), so we know that \(FE \) and \(HB \) meet, at point \(K \) [post. 5]
5. Now, extend \(FE \) and \(HB \) [post. 2]
6. Through \(K \), draw \(KL \parallel EA \) and extend \(HA \) and \(GB \) to point \(L \) and \(M \) [I.31]

Proof:
Parallellograms \(LMBA = BEFG \) [I.43]
Since parallelogram \(BEFG = \triangle C \), we know that parallelogram \(LMBA = \triangle C \) [cn. 1]
Then, \(\angle D = \angle GBE \), but \(\angle GBE = \angle ABM \) [I.15]
Then, \(\angle D = \angle ABM \)
Therefore, parallelogram \(LMBA = \triangle C \), on line \(AB \) with \(\angle ABM = \angle D \)

Q.E.F.