Proposition I.46

On a given straight line to describe a square.
Let \(AB \) be the given straight line

Construction:
Draw a perpendicular line \(AC \perp AB \) (I.11)
Cut off \(AC \) at point \(D \) such that \(AD = AB \) (I.3)
Draw a line from \(D \) parallel to \(AB \) (I.31)
Draw a line from \(B \) parallel to \(AD \) (I.31)
Let these two constructed lines intersect at point \(E \)

Proof:
\[\because AD \parallel BE, AB \parallel DE \]
\[\therefore AD = BE, AB = DE \text{ (I.34)} \]

But \(AB = AD \),
\[\therefore AB = AD = BE = DE \text{ (c.n.1)} \]
\[\therefore DE \parallel AB \]
\[\therefore \angle BAD + \angle ADE = \perp \perp \text{ (I.29)} \]

But \(\angle BAD = \perp \),
so \(\angle ADE = \perp \).

Since \(ADEB \) is a parallelogram,
\[\angle BAD = \angle DEB, \angle ADE = \angle EBA \text{ (I.34)} \]
So \(ADEB \) is a square (Def. 20)