Proposition IV.10

To construct an isosceles triangle with each of the base angles equal to double the remaining angle.
Construction:

1) Let there be a straight line AB
2) Cut AB at a point C s.t. $AB \cdot BC = AC^2$ (II.11)
3) Draw a circle with center A and radius AB
4) Fit in the circle a straight line BD s.t. $BD = AC$ where $AC < AB$
5) Join AD and DC (post. 1)
6) Circumscribe a circle about $\triangle ACD$

Proof:

$\therefore AC = BD$
$\therefore AC^2 = BD^2$
$\therefore AC^2 = AB \cdot BC$
$\therefore BD^2 = AB \cdot BC$

Claim that BD touches circle ACD (III.37) because B is outside circle ACD by construction and from B, BA and BD fall on circle ACD, one cutting it, one falling through it, and $BD^2 = AB \cdot BC$

Since BD touches circle ACD and DC drawn across from point of contact at D, $\angle BDC = \angle DAC$ (III.32)

Then $\angle BDC + \angle CDA = \angle DAC + \angle CDA$ (c.n.2)

But $\angle BDC + \angle CDA = \angle BDA$

$\therefore \angle BDA = \angle DAC + \angle CDA$

$\angle BCD = \angle DAC + \angle CDA$ (I.32)

$\therefore BDA = \angle BCD$

Since $AB = AD$

$\therefore \angle BDA = \angle CBD$ (I.5)

$\therefore \angle BDA = \angle BCD = \angle CBD$

Since $\angle BCD = \angle CBD$ (I.6)

But $BD = CA$ by construction, $\therefore CA = DC$

$\therefore \angle DAC = \angle CDA$ (I.5)

$\therefore \angle BDA = \angle DAC + \angle CDA$

$\therefore BDA = 2 \cdot \angle DAC$

$\therefore \angle BCD = \angle DAC + \angle CDA$

$\therefore \angle BCD = 2 \cdot \angle DAC$

But $\angle BCD = \angle ABD$

$\therefore \angle ABD = 2 \cdot \angle DAC$