Proposition XI.2: If two straight lines cut one another, they are in one plane, and every triangle is in one plane.

Proving two things:
1. If two straight lines cut one another, they are in one plane
2. Every triangle is in one plane

Let AB, CD cut one another at E.
Claims:
1. $\triangle FCH$ and $\triangle GKB$ are part of $\triangle ECB$ so one is in the plane of reference and the other is not
2. EC and EB make up $\triangle ECB$ so one is in the plane of reference and the other is not

Parallelogram $FCBG$ is also part of $\triangle ECB$, so EC and EB cannot have a part in the plane of reference and a part in another [XI.1]. Therefore, $\triangle ECB$ is in one plane (claim 2).

In whatever plane $\triangle ECB$ is in, EC and EB are also in and whatever place EC and EB are in, AB and CD are also in [XI.1]. Thus AB and CD are in one plane (claim 1).

Note: Euclid never mentions planes in his proof, so an unnamed postulate is needed to prove proposition. The proposition: 3 noncolinear points determine a plane.