Proposition XIII.9

If the side of the hexagon and that of the decagon inscribed in the same circle are added together, then the whole straight line has been cut in extreme and mean ratio, and its greater segment is the side of the hexagon.

Given:
A circle ABC with diameter AB, BC equal to the side length of a regular decagon inscribed in ABC, and CD equal to the side of a regular hexagon inscribed in circle ABC.
Claims:
1) BD is cut at C in extreme and mean ratio, and
2) CD is the greater segment.

Proof:
Let E be the center of ABC. [III.1]
Join EC and ED.
The circumference of ABC is 10 times circumference BC.
So $(\text{circumference } ACB) = 5(\text{circumference } BC)$.
$\text{(circumference } AC) = 4(\text{circumference } BC)$.
$(\text{circumference } AC) : (\text{circumference } BC) = \angle AEC : \angle CEB$.
$\therefore \angle AEC = 4\angle CEB$.
$\angle EBC = \angle ECB$ since $BE = CE$. [I.5]
$\angle AEC = \angle EBC + \angle ECB = 2\angle ECB$. [I.32]

Since CD = side of regular hexagon inscribed in ABC, and since EC = radius of circle ABC:
$CD = EC$. [IV.15 cor.]

So $\angle CED = \angle CDE$. [I.5]
$\angle ECB = \angle CED + \angle CDE = 2\angle CDE$. [I.32]
$\therefore \angle AEC = 4\angle CDE$.
So $\angle CEB = \angle EDC$.

In $\triangle BEC$ and $\triangle BDE$:
$\angle EBD$ is common, and $\angle CEB = \angle EDC$, so $\angle BDE = \angle ECB$. [I.32]
Therefore the triangle $\triangle BEC$ and $\triangle BDE$ are equiangular.
$DB : BE = EB : BC$ [VI.4]
$BE = CD$, so $DB : CD = DC : BC$.
Thus BD is cut in extreme mean ratio, and CD is the greater segment.
Q.E.D.