1 Introduction

Let G be a compact connected Lie Group with Lie algebra \mathfrak{g}. T a maximal torus of G with Lie Algebra \mathfrak{t}. Let $W = N_G(T)/T$ be the Weyl group of T in G. W acts on \mathfrak{t} through the Ad representations. W is generated by reflections across kernels of roots of \mathfrak{t} in $\mathfrak{g} \otimes \mathbb{C}$ or if you like the positive real roots.

The main result of these notes is that $H(G/T)$ vanishes in odd degrees. We will in fact provide a ring isomorphism $H(G/T)$ to a purely algebraic structure.

2 Background/Review

Let (\langle , \rangle) be the Ad-invariant inner product on \mathfrak{g} (average all inner products on \mathfrak{g} or take the negative of the Killing Form). We then have an orthogonal decomposition $\mathfrak{g} = \mathfrak{m} \oplus \mathfrak{t}$. For $X, Y, Z \in \mathfrak{g}$, the inner product satisfies $\langle [X, Y], Z \rangle + \langle Y, [X, Z] \rangle = 0$. Note that $\text{Ad}(T)$ has no nonzero invariant vectors in \mathfrak{m} and no nonzero element of \mathfrak{m} has zero bracket will all of \mathfrak{t} (by maximally of \mathfrak{t} as an abelian subalgebra).

A generic element $H_0 \in \mathfrak{t}$ is such that $\exp H_0$ is a regular element of T (i.e. its powers are dense in T). Note, $H_0 \in \mathfrak{t}$ is regular iff $\text{Ad}(G)$ centralizer is precisely $\text{Ad}(T)$. For the remainder of this text, we choose some particular generic element $H_0 \in \mathfrak{t}$

Let $\mathfrak{m} = \mathfrak{m}_1 \oplus \ldots \oplus \mathfrak{m}_v$ be an orthogonal decomposition given by the real irreducible representation of T, which are 2 dimensional. For $H \in \mathfrak{t}$, the eigenvalues of $\text{Ad} \exp H$ on \mathfrak{m}_i are $\{\exp(\pm \sqrt{-1} \alpha_i(H))\}$, where $\alpha_i \in \mathfrak{t}^*$. We let the set of positive roots $\Delta^+ = \{\alpha_1, \ldots, \alpha_v\}$ be the set of roots that take positive values on our generic element H_0. Note that since W acts faithfully on \mathfrak{t}, its image in $\text{GL}(\mathfrak{t})$ is generated by reflections about the kernels of elements in Δ^+.

Since \mathfrak{m}_i are preserved by $\text{ad}(\mathfrak{t})$, we can choose an orthonormal basis $\{X_i, X_{i+v}\}$ for \mathfrak{m}_i such that the matrix for $\text{ad}(H) |_{\mathfrak{m}_i}$, $H \in \mathfrak{t}$, is $\begin{bmatrix} 0 & \alpha_i(H) \\ -\alpha_i(H) & 0 \end{bmatrix}$. Then ad-invariance of the inner product gives us

$$\langle H, [X_i, X_j] \rangle = \langle [X_i, H], X_j \rangle = \langle [H, X_i], X_j \rangle = -\alpha_i(H) \langle X_{i+v}, X_j \rangle$$

for $1 \leq i \leq v$, $1 \leq j \leq 2v$. Above, the right hand can be nonzero only if $j = i + v$. Thus, if $j \neq i \pm v$, then $[X_i, X_j] \in \mathfrak{m}$.

For $1 \leq i \leq v$, we let $H_i = [X_i, X_{i+v}]$, which is $\text{Ad}(T)$-invariant so $H_i \in \mathfrak{m}$ and $\text{ad}(H_i) \mathfrak{m}_i \subset \mathfrak{m}_i$. The span of X_i, X_{i+v}, H_i is a Lie subalgebra of \mathfrak{g} that is actually isomorphic to $\mathfrak{su}(2)$.

3 Invariant Theory

Let $\mathcal{P} = \bigoplus_{p=0}^{\infty} \mathcal{P}^p$ be the symmetric algebra on \mathfrak{t}^* (i.e. $\mathcal{P}^p = (\mathfrak{t}^*)^p / \sim$ where $\lambda_1 \otimes \ldots \otimes \lambda_p \sim \lambda_{\sigma(1)} \otimes \ldots \otimes \lambda_{\sigma(p)}$ for $\sigma \in S_p$). One can think of \mathcal{P} as polynomials over \mathbb{R} where the monomials are products of functionals on \mathfrak{t}. The adjoint action of W on \mathfrak{t} induces an action/representations of W on \mathcal{P} by degree-preserving algebra automorphisms (for $\lambda \in \mathfrak{t}^*$ and $w \in W$, the action is $\lambda \mapsto \lambda \circ \text{Ad}(w^{-1})$).

We will be interested in the W-invariant polynomials \mathcal{P}^W.

Example 1. For $U(n)$, \mathcal{P}^W is generated by elementary symmetric polynomials. For $U(n)$, \mathfrak{t} is the set of diagonal complex matrices with $a_j \sqrt{-1}$ on the diagonal and W acts as S_n, \mathfrak{t} on by permuting a_j.

Theorem 2. (Chevalley) The ring \mathcal{P}^W has algebraically independent homogeneous generators F_1, \ldots, F_l with $\mathcal{P}^W = \mathbb{R}[F_1, \ldots, F_l]$ where $l = \dim \mathfrak{t}$. (Recall: algebraically independent means that the homomorphism $\mathbb{R}[X_1, \ldots, X_l] \to \mathbb{R}[F_1, \ldots, F_l]$ given by $X_i \mapsto F_i$ is an isomorphism)

The generators are numbered such that $\deg F_1, \ldots, \deg F_l$. We will call the numbers $m_i = \deg F_i - 1$ the exponents of W acting on \mathfrak{t}. It is known that $m_1 + \ldots + m_l = v$ and $(1 + m_1) \ldots (1 + m_l) = |W|$.

Example 3. $SU(n)$ the m_i’s are $1, \ldots, n-1$ and for G_2 they are $1, 5$. Note that for $SU(n)$ you loose the generator it degree 1, which you had for $U(n)$, because of linear dependence. For G_2, the Lie algebra of T is that of $SU(3)$ but the action of W is extended by an inversion.
Let \mathcal{D} be the ring of constant coefficient differential operators on \mathcal{P}. We can thing of \mathcal{D} as the symmetric algebra $S(t)$, where $H \in t$ corresponds to the function on t^* given by evaluation at H (e.g. $H \cdot (\lambda_1 \lambda_2) = \lambda_1(H) \lambda_2 + \lambda_2(H) \lambda_1$ or the directional derivative for the vector H). We have that W acts naturally on \mathcal{D} (by it’s action on $S(t)$) and we define the “harmonic polynomials” in \mathcal{D} to be those annihilated by the W-invariant differential operators

$$\mathcal{H} = \{ f \in \mathcal{P} : \mathcal{P} f = 0 \}.$$

One can think of \mathcal{H} as the solution to a set of differential equations.

Let $\mathcal{H}^p = \mathcal{H} \cap \mathcal{D}^p$, then $\mathcal{H} = \bigoplus_p \mathcal{H}^p$ since a differential operator is W invariant if and only if each homogeneous component in W invariant (think the action of W on $S(t)$). Note that the action of W on \mathcal{D} preserves \mathcal{H} (for $g \in W$, $p \in \mathcal{P}$, $D \in \mathcal{D}$, we have that $D(g \cdot p) = (g^{-1} \cdot D)(p)$).

Proposition 4. If \mathcal{J} is the ideal generated by the elements of \mathcal{P}^W of positive degree, then $\mathcal{P} = \mathcal{H} \oplus \mathcal{J}$ and multiplication is a linear isomorphism $\mathcal{H} \otimes \mathcal{P}^W \rightarrow \mathcal{P}$.

The former gives us that \mathcal{P}/\mathcal{J} is isomorphic to \mathcal{H} as W modules (Note: they are in fact isomorphic to the regular representation of W). The isomorphism $\mathcal{H} \otimes \mathcal{P}^W \sim \mathcal{P}$ implies

$$\sum_{p \geq 0} \dim \mathcal{H}^p \mathcal{P}^p = \prod_{i=1}^l (1 + t + t^2 + \ldots + t^{m_i}) \text{ (where } l = \dim t)$$

which shows that $\dim \mathcal{H}^v = 1$ and $\mathcal{H}^p = 0$ for $p > v$. This formula is deduced from

$$\sum_p \dim \mathcal{P}^p \mathcal{P}^p = \left(\sum_p \dim \mathcal{H}^p \mathcal{P}^p \right) \left(\sum_p \dim (\mathcal{P}^W \cap \mathcal{P}^p) \mathcal{P}^p \right),$$

$$\sum_p \dim \mathcal{P}^p \mathcal{P}^p = (1 + t + t^2 + \ldots)^l = \frac{1}{(1-t)^l} \text{ and } \sum_p \dim (\mathcal{P}^W \cap \mathcal{P}^p) \mathcal{P}^p = \prod_{i=1}^l \frac{1}{(1-t^{m_i})^l}.$$

The primordial harmonic polynomial is $\Pi = \prod_{\alpha \in \Delta^+} \alpha \in \mathcal{H}^v$. For $U(n)$ this is the Vandermonde determinant $\prod_{i<j} (x_i - x_j)$, which is transformed by the sign character by the action of S_n. In general, W act like the sign character on the span of Π, where the sign character $\varepsilon : W \rightarrow \{ \pm 1 \}$ gives the parity of the number of reflections for each $g \in W$. Any other polynomial whose span is preserved by the action of the sign character vanishes on all root hyperplanes and so is divisible by Π. Thus Π generates \mathcal{H}^v as dim $\mathcal{H}^v = 1$.

We may now state the theorem we will discuss at the end of this talk

Theorem 5. (Borel) There is a degree-doubling W-equivariant ring isomorphism

$$c : \mathcal{P}/\mathcal{J} \rightarrow H(G/T).$$

Consequently, $\mathcal{H}_2 \simeq H(G/T)$, where the subscript indicated degree doubling.

4 Invariant Differential Forms

Let G act transitively on a manifold M (think $M = G/T$). If τ_g is the diffeomorphism given by $g \in G$, then a differential p-form $\omega \in \Omega^p(M)$ is G-invariant if $\tau_g^* \omega = \omega$ for all $g \in G$. Since G acts transitively, such a form is determined by its value at one point on M.

Lemma 6. Every de Rham cohomology class of M is represented by a G-invariant form and the complex of G-invariant forms is preserved by the exterior derivative.

Definition 7. We define Λ^n as the set of all skew-symmetric multilinear maps $\omega : n \times \ldots \times n \rightarrow \mathbb{R}$ where the domain has p terms.

Proposition 8. The complex $\{(\Lambda^n)^K, \delta\}$ computes $H^*(M)$, where K is the stabilizer of a point $o \in M$, $g = t \oplus n$ with t the Lie algebra of K, and δ is defined below.
Proof. Identify $M = G/K$ and note that $T_o(M)$ is naturally identified with n. Thus, an invariant form $\tilde{\omega}$ is determined by a skew-symmetric multilinear map

$$\omega = \tilde{\omega}_o : n \times \cdots \times n \to \mathbb{R},$$

that is $\omega \in \Lambda^p n^*$. The invariance of $\tilde{\omega}$ under K implies that ω is $\text{Ad}(K)$ invariant. Conversely, any element $\omega \in (\Lambda^p n^*)^K$ determines a G invariant form $\tilde{\omega}$ by

$$\tilde{\omega}_g o((d\tau_g)X_1, \ldots, (d\tau_g)X_p) = \omega(X_1, \ldots, X_p),$$

for $X_1, \ldots, X_p \in n \simeq T_o(M)$ and $g \in G$. Thus, we may identify the G-invariant p-forms with $(\Lambda^p n^*)^K$. The exterior derivative then become $\delta : (\Lambda^p n^*)^K \to (\Lambda^{p+1} n^*)^K$ given by

$$\delta \omega(X_0, \ldots, X_p) = \frac{1}{p+1} \sum_{i<j} (-1)^{i+j} \omega([X_i, X_j]_n, X_0, \ldots, \hat{X}_i, \ldots, \hat{X}_j, \ldots, X_p).$$

Where $[X_i, X_j]_n$ is the projection of $[X_i, X_j]$ on n along r and $\hat{\cdot}$ means the term is omitted. By the Lemma, the complex $\{ (\Lambda^p n^*)^K, \delta \}$ computes $H^*(M)$.

\[\square \]

Example 9. Define $\omega(X, Y, Z) = \langle X, [Y, Z] \rangle$ then $[\omega] \neq 0 \in H^3(G)$. In particular, S^n is not a Lie group for $n > 3$.

5 Cohomology of Flag Manifolds

We will use Morse Theory to show that the odd dimensional cohomology of G/T vanishes. We can further use this approach to decompose the flag manifold G/T into cells. This is called the Bruhat Decomposition. This process will be the generalization of decomposing the $S^2 = SU(2)/T$ into a 0-cell and a 2-cell.

We will find a Morse function f on G/T. For a smooth manifold M, a morse function $f : M \to \mathbb{R}$ is a smooth function with non-singular Hessian $H_x f$ at each critical point x. The function we will be the analogue of the dot product of vectors on a 2-sphere with the vector pointing to the north pole. The span of the gradient flow lines emanating from a critical point will provide us with a cell decomposition. For the sphere the flow lines from the south pole give us the 2-cell and the north pole, which has no flow lines emanating, gives us the 0-cell.

If f is a Morse function and x is critical point, let $\lambda(x)$ be the number of negative eigenvalues of $H_x f$. Then the Morse polynomial is $M_t(f) = \sum \lambda(x) t^x$ over the critical points x of f.

Theorem 10. For a morse function $f : M \to \mathbb{R}$, we have that $M_t(f) \geq \sum_i \dim H^i(M)t^i$. Moreover, if the morse polynomial has no consecutive exponents, equality holds.

To construct a Morse function on G/T, we take the regular element $H_0 \in t$ that we chose for the positive roots. Recall that the $\text{Ad}(G)$ centralizer of H_0 is exactly $\text{Ad}(T)$, so we may view $G/T \subset \mathfrak{g}$ as the $\text{Ad}(G)$ orbit of H_0 (analogous to $S^2 \subset \mathbb{R}^3$). We define $f : G/T \to \mathbb{R}$ by

$$f(gT) = \langle \text{Ad}(g) H_0, H_0 \rangle.$$

For $X \in \mathfrak{g}$, we can compute the vector field

$$\tilde{X}f(gT) = \frac{d}{ds} f(\exp(sX)gT) |_{s=0} = \langle \text{Ad}(g) H_0, [H_0, X] \rangle,$$

where the last equality is given by ad invariance of the inner product. Since the centralizer of H_0 in \mathfrak{g} is exactly t as H_0 is regular, it follows that the image of $\text{ad}(H_0)$ is \mathfrak{m}. So gT is a critical point of f if and only if $\langle \text{Ad}(g) H_0, \mathfrak{m} \rangle = 0$. Therefore, $\text{Ad}(g) H_0 \in t$ by the orthogonal decomposition of \mathfrak{g}. It follows that $\text{Ad}(g) H_0 = \text{Ad}(w) H_0$ for some $w \in W$ and that wT, for $w \in W$, are precisely the critical points of f.

Let X_1, \ldots, X_{2n} be the orthonormal basis for \mathfrak{m} we discussed earlier. Note that the differential of $\pi : G \to G/T$ maps $\text{Ad}(w) \mathfrak{m} = \mathfrak{m}$ isomorphically onto $T_{\pi(T)}(G/T)$, so we may use our basis to compute
the Hessian at each point wT. If h_{ij} is the ij entry in $H_{wT}f$, then using our identities for the inner product

$$h_{ij}(wT) = X_i X_j f(wT) = \langle [X_i, \text{Ad}(w)H_0], [H_0, X_j] \rangle = -\alpha_i(\text{Ad}(w)H_0)\alpha_j(H_0)\langle X_{i\pm v}, X_{j\pm v} \rangle.$$

Note that it follows that $h_{ij} = 0$ for $i \neq j$ and $h_{ii}(wT) = -\alpha_i(\text{Ad}(w)H_0)\alpha_i(H_0)$. Since H_0 is regular, then so is $\text{Ad}(w)H_0$ and therefore $h_{ii}(w) \neq 0$ and $H_{wT}f$ is non singular. Thus, as $\dim m = 2\nu$, the index $\lambda(wT)$ is twice the number $m(w)$ of positive roots α such that $H \mapsto \alpha(\text{Ad}(w)H)$ (i.e. $w^{-1} \cdot \alpha$) is again a positive root.

The Morse polynomial of f is then $M_t(f) = \sum_{w \in W} t^{2m(w)}$. Since all the exponents of $M_t(f)$ are odd, $M_t(f) = \sum_i H^i(M)t^i$ and it follows that $H^i(M) = 0$ for i odd. In particular, $\sum_i \dim H^{2i}(G/T) = |W|$.

The Schubert cell X_w in the Bruhat Decomposition is the cell spanned by the flow lines of the gradient of f emanating from wT. The dimension of this cell is then the number of positive eigenvalues of the $H_{wT}f$, or, equivalently, twice the number of positive roots that become negative under $w^{-1} \cdot \alpha$.

Note that W acts on G/T by $w \cdot gT = gw^{-1}T$, which gives us an action of W on $H(G/T)$. Since $H(G/T)$ vanishes in odd degrees, the Lefschetz number associated to wT in the Bruhat Decomposition is the cell spanned by the flow lines of the gradient emanating from wT. The dimension of this cell is then the number of positive eigenvalues of the $H_{wT}f$, or, equivalently, twice the number of positive roots that become negative under $w^{-1} \cdot \alpha$.

We can now give the proof of our final result, which we restate here.

Theorem 11. (Borel) There is a degree-doubling W-equivariant ring isomorphism

$$c : \mathcal{P}/\mathcal{J} \rightarrow H(G/T).$$

Consequently, $\mathcal{H}(2) \simeq H(G/T)$, where the subscript indicated degree doubling.

Proof. The idea is to describe $H(G/T)$ in terms of G-invariant differential forms. For each $\lambda \in \mathfrak{t}^*$, we extend λ to all of \mathfrak{g} by making it zero on m and define an $\text{Ad}(T)$-invariant 2-form on m by

$$\omega_{\lambda}(X, Y) = \lambda([X, Y]).$$

We can identify ω_{λ} with an honest G-invariant differential form $\tilde{\omega}_{\lambda}$ as before. The action of W on G-invariant forms is given by its action on G/T. One can compute that $w \cdot \omega_{\lambda} = \omega_{\tilde{w}\lambda}$. Further, the Jacobi identity implies that $\delta \omega_{\lambda}(X, Y, Z) = \frac{1}{3}([[[X, Z]_m, Y] - [[X, Y]_m, Z] - [[Y, Z]_m, X]) = 0$. We let $c(\lambda) = [\tilde{\omega}_{\lambda}] \in H^2(G/T)$ and extend it to degree-doubling map

$$c : \mathcal{P} \rightarrow H(G/T)$$

which preserves the W-action on both sides. Since $H(G/T)$ is the regular representation of W, its W-invariants are 1-dimensional and can therefore only occur in $H^0(G/T)$. Since c is W-equivariant, it follows that the kernel of c contains the ideal \mathcal{J}. The rest of the proof deals with showing that \mathcal{J} is exactly the kernel of c.

To prove that $\ker c = \mathcal{J}$, it suffices to show that c is injective on \mathcal{H} as $\mathcal{P} = \mathcal{H} \oplus \mathcal{J}$. This is done by induction starting at the highest degree of 2ν and descending down. For degree 2ν it suffices to show that $c(\Pi)$, where Π is the primordial harmonic polynomial, is non zero in $H^{2\nu}(G/T)$.

For each root $\alpha_i \in \Delta^+$, we have element $X_i, X_{i+\nu}$ that form a basis for m such that $[X_i, X_{i+\nu}] = H_i \mathfrak{t} \mathfrak{t}$. Recall that $[X_i, X_j] \in m$ is $j \neq i + \nu$ where $1 \leq i \leq \nu$. For each i, write $\omega_i = \omega_{\alpha_i}$. Then by definition $c(\Pi) = [\tilde{\omega}_{\alpha_1} \wedge \cdots \wedge \tilde{\omega}_{\alpha_\nu}]$ and we can evaluate

$$\omega_1 \wedge \cdots \wedge \omega_\nu(X_1, X_{1+\nu}, \ldots, X_\nu, X_{2\nu}) = \frac{1}{(2\nu)!} \sum_{\sigma \in S_{2\nu}} \text{sgn}(\sigma)\omega_1(X_{\sigma(1)}, X_{\sigma(1+\nu)}) \cdots \omega_\nu(X_{\sigma(\nu)}, X_{\sigma(2\nu)}) =$$

$$= \frac{1}{(2\nu)!} \sum_{\sigma \in S_{2\nu}} \text{sgn}(\sigma)\alpha_1([X_{\sigma(1)}, X_{\sigma(1+\nu)}]) \cdots \alpha_\nu([X_{\sigma(\nu)}, X_{\sigma(2\nu)}])$$

\]
Since \(\alpha_i([X_{\sigma(i)}, X_{\sigma(i+\nu)}]) = 0 \) unless \([X_{\sigma(i)}, X_{\sigma(i+\nu)}] \in m\), the term for \(\sigma \) is zero unless \(\sigma \) permutes the pairs \(\{i, i+\nu\} \), and possibly switches the order of members. Note that \(\sigma(\sigma) \) is minus one the number of switches, so it follows that

\[
\omega_1 \wedge \ldots \wedge \omega_\nu(X_1, X_{1+\nu}, \ldots, X_\nu, X_{2\nu}) = \frac{2^\nu}{(2\nu)!} \sum_{\sigma \in S_\nu} \alpha_1([X_{\sigma(1)}, X_{\sigma(1)+\nu}] \cdots \alpha_\nu([X_{\sigma(\nu)}, X_{\sigma(\nu)+\nu}]) =
\]

\[
= \frac{2^\nu}{(2\nu)!} \sum_{\sigma \in S_\nu} \alpha_1(H_{\sigma(1)}) \cdots \alpha_\nu(H_{\sigma(\nu)}) = \frac{2^\nu}{(2\nu)!} \partial_1 \cdots \partial_\nu \Pi
\]

where \(\partial_i \) is the derivation of \(\mathcal{D} \) extending \(\lambda \mapsto \lambda(H_i) \). Since the pairing \(\mathcal{D} \otimes \mathcal{D} \to \mathbb{R} \) given by \((D, f) \mapsto (Df)(0) \) is perfect, it follows that there is a degree \(\nu \) differential operator that pairs non trivially with \(\Pi \). Further, since an irreducible \(W \)-module can only pair non trivially with its dual, and the self-dual character \(\varepsilon \) occurs with multiplicity one in \(\mathcal{D} \), affored by \(\partial_1 \cdots \partial_\nu \), it follows that \(\partial_1 \cdots \partial_\nu \Pi \neq 0 \) and \(c(\Pi) \neq 0 \).

We may now inductively assume that \(c : \mathcal{H}^k \to H^{2k}(G/T) \) is injective for some \(k \leq \nu \). Let \(V = \mathcal{H}^{k-1} \cap \ker c \). Note that \(V \) is preserved by \(W \) since \(c \) is \(W \)-equivariant. Since the sign character is absent from \(\mathcal{H}^{k-1} \), there is a possible root \(\alpha \) such that the reflection \(s_\alpha \) along the associated hyperplane does not act like \(-I \) on \(V \). We can then decompose \(V = V_+ \oplus V_- \) according to the eigenspaces of \(s_\alpha \). If \(V \neq 0 \), then \(V_+ \neq 0 \) so we may take some \(f \in V_+ \). Now \(c(\alpha f) = c(\alpha) c(f) = 0 \) and \(\alpha f \) is in degree \(k \), so \(\alpha f \in \mathcal{J} \) by assumption. Let \(h_1, \ldots, h_{|W|} \) be a basis for \(\mathcal{H} \) with \(h_1, \ldots, h_r \) \(s_\alpha \)-skew and the rest \(s_\alpha \)-invariant. By Chevalley’s Theorem, we can write \(\alpha f = \sum_i h_i \tau_i \), with \(\tau_i \) \(W \)-invariant of positive degree. Since \(\alpha f \) is \(s_\alpha \)-skew by construction, the sum only goes up to \(r \). For \(i \leq r \), the polynomial \(h_i \) must vanish on \(\ker \alpha \) and therefore \(h_i = \alpha h'_i \) for some \(h'_i \in \mathcal{D} \). Then it follows that \(f = \sum_{i=1}^r h'_i \tau_i \in \mathcal{J} \) and \(f \) is harmonic. Thus, we must have that \(f = 0 \) and \(c \) is injective on \(\mathcal{H}^{k-1} \). By induction, \(c \) is injective and since \(H(G/T) \) vanishes in odd degree, the proof is complete.

\[\square \]