Optimal Credit Market Policy

Matteo Iacoviello1 \quad Ricardo Nunes2 \quad Andrea Prestipino1

1Federal Reserve Board
2University of Surrey

CEF 2018, Milan

June 20, 2018

Disclaimer: The views expressed are solely the responsibility of the authors and should not be interpreted as reflecting the views of the Board of Governors of the Federal Reserve System or of anyone else associated with the Federal Reserve System.
A frequently heard narrative:

- The Great Recession was caused by excessive lending and borrowing, especially in the housing market.

- Restraining borrowing and housing investment could have prevented the crisis, and could avoid a repeat of the crisis in the future.

- We should put in place macroprudential tools that prevent the buildup of financial imbalances.
What We Do

We analyze optimal credit market policy in a model with housing and financial frictions.

We show that such economy features too much or too little housing investment relative to socially optimal level over the business cycle.

Savers and borrowers are explicitly modeled.

- Previous literature: Small-open economy models with international lenders, or models with a constant interest rate.
- This paper: An infinite-horizon model with borrowers and savers.
Preview of Results

- Optimal credit market policy leans against the wind
 Ex-ante overborrowing is corrected with “macroprudential” taxes.
 Ex-post underborrowing is corrected with credit market subsidies.

- A simple tax policy that responds to housing or credit gaps improves welfare.

\[\tau_t = \bar{\tau}_h + \phi_h (q_h t - \bar{q}h) \]

\[\tau_t = \bar{\tau}_b + \phi_b (b_t - \bar{b}) \]
A 3-period Model with Frictions

- \(t = 1, 2, 3 \). Two goods: consumption \(c \), housing \(h \).
 Total housing fixed \((h + h' = 2)\).
 Agents produce \(c \) goods using:

\[
y_t = A_t h_{t-1}^\gamma
\]

\(A_t \) stochastic in period 2 only (can be low or high)

- Two agents: utility functions are given by:

\[
U^S (c'_t) = E_1 \sum_{t=1}^{3} \log (c'_t), \quad U^B (c_t) = E_1 \sum_{t=1}^{3} \log (c_t),
\]

- Budget constraints, in each of three periods:

\[
c_t + q_t h_t + R_{t-1} b_{t-1} = \omega_t + A_t h_{t-1}^\gamma + q_t h_{t-1} + b_t
\]

\(\omega_t \) a deterministic endowment.

- Borrowing subject to collateral constraint

\[
b_t \leq mq_t h_t
\]
Saver’s Problem

Saver chooses \(\{ c'_t \}, \{ b'_t \} \) and \(\{ h'_t \} \) to

\[
\max E_1 \sum_{t=1}^{3} \log (c'_t)
\]

subject to:

\[
c'_t + q_t h'_t + R_{t-1} b'_{t-1} = \omega'_t + A'_t h'_{t-1} + q_t h'_{t-1} + b'_t
\]

(1)

Optimality conditions given by:

\[
1 = E_t \left(\frac{c'_t}{c'_{t+1}} \right) R_t
\]

(2)

\[
1 = E_t \left(\frac{c'_t}{c'_{t+1}} \frac{A_{t+1} F'(h'_t) + q_{t+1}}{q_t} \right)
\]

(3)

plus budget constraint at equality. Saver equalizes discounted return on housing and saving.
Borrower's Problem

Borrower chooses \(\{c_t\} , \{b_t\} \) and \(\{h_t\} \) to:

\[
\max E_1 \sum_{t=1}^{3} \log (c_t)
\]

subject to:

\[
c_t + q_t h_t - b_t = \omega_t + A_t h_{t-1} + q_t h_{t-1} - b_{t-1} R_{t-1}
\]

\[
b_t \leq m q_t h_t
\]

Letting \(\lambda_t \) denote multiplier on constraint (5):

\[
\frac{1}{c_t} = E_t \left(\frac{R_t}{c_{t+1}} \right) + \lambda_t
\]

\[
\frac{q_t}{c_t} = E_t \left(\frac{A_{t+1} F' (h_t) + q_{t+1}}{c_{t+1}} \right) + m \lambda_t q_t
\]

together with complementary slackness condition on (5).
Implications of Collateral Constraint

- Binding collateral constraint, $\lambda_t > 0$, prevents borrower from undertaking investment even if marginal benefit of such investment is greater than marginal cost of funds:

\[
E_t \left(\frac{c_t}{c_{t+1}} \frac{A_{t+1}F'(h_t) + q_{t+1}}{q_t} \right) > E_t \left(\frac{c'_t}{c'_{t+1}} R_t \right).
\]

- Collateral constraint prevents beneficial trade between borrowers and savers.
- Welfare analysis below will explore different ways in which a planner, although forced to respect constraint and to operate through same markets as private agents, can reduce the extent of such unexploited trade opportunities.
Optimal Policy

- Two sources of inefficiency in this model:
 - Collateral constraint
 - Market incompleteness

- Planner is allowed decide borrower’s portfolio but must respect:
 - Saver’s optimality conditions for h and b
 - Agents’ budget constraints
 - Collateral constraint
Planner’s Problem (Commitment)

Choose \(\{c_t\}, \{c'_t\}, \{h_t\}, \{h'_t\}, \{b_t\} \) and prices \(\{R_t\}, \{q_t\} \) to solve

\[
\max E_1 \sum_{t=1}^{3} \log (c_t) \tag{8}
\]

subject to:

\[
c_t + q_t h_t - b_t = \omega_t + A_t h_{t-1}^{\gamma} + q_t h_{t-1} - b_{t-1} R_{t-1} \tag{9}
\]

\[
b_t \leq m q_t h_t \tag{10}
\]

\[
c'_t + q_t h'_t + b'_t = \omega'_t + A_t h'_{t-1}^{\gamma} + q_t h'_{t-1} - b'_{t-1} R_{t-1} \tag{11}
\]

\[
1 = E_t \left(\frac{c'_t}{c'_{t+1}} \right) R_t \tag{12}
\]

\[
1 = E_t \left(\frac{c'_t}{c'_{t+1}} \frac{A_{t+1} F' (h'_t) + q_{t+1}}{q_t} \right) \tag{13}
\]

\[
E_1 \sum_{t=1}^{3} \log (c'_t) \geq v' (h_{-1}, b_{-1} R_{-1}) \tag{14}
\]

\(v' \): indirect utility function of saver in competitive equilibrium.
Remarks on Planner’s Problem

- Chosen allocation satisfies the notion of constrained efficiency
- Allocation differs from competitive equilibrium because of pecuniary externalities.
- Allocation internalizes effect of borrower’s choices on prices

- If planner could set arbitrary prices (savers FOCs taken out), then the solution would be the unconstrained first-best.
- If planner did not internalize effects on prices, then the solution would be the competitive equilibrium.
Implementing the Constrained-Efficient Allocation

Planner can implement different allocations by choosing taxes to achieve desired levels of \(\{c_t\}, \{c'_t\}, \{h_t\}, \{h'_t\}, \{b_t\} \) and prices \(\{R_t\}, \{q_t\} \), that is, choose \(\tau_h \) and \(\tau_b \) to solve

\[
\max E_1 \sum_{t=1}^{3} \log (c_t)
\]

subject to all constraints as before, as well as

\[
\frac{1 - \tau_{b,t}}{c_t} = E_t \left(\frac{R_t}{c_{t+1}} \right) + \lambda_t
\]

\[
\frac{q_t (1 + \tau_{h,t})}{c_t} = E_t \left(\frac{A_{t+1} F'(h_t) + q_{t+1}}{c_{t+1}} \right) + m\lambda_t q_t
\]

Taxes are rebated lump-sum to borrowers
Parameter Values

- \(y = Ah_{-1}^{0.5} \).
- \(A = 1 \) in \(t_1 \) and \(t_3 \).
- In \(t_2 \):
 - \(A = 1 \) (no-uncertainty), or
 - \(A = (1 + \sigma, 1 - \sigma) \) wp 1/2 (uncertainty).
- \(\omega_2 = \omega'_2 = \omega_3 = \omega'_3 = 0. \omega_1 + \omega'_1 = 2, \ h_0 + h'_0 = 2. \)

Focus on implementation through **housing taxes** only.
(achieves half of the maximum welfare gains, but gets the intuition across)

Study how allocations and welfare of borrowers vary with \(\sigma \), holding savers’ welfare at competitive equilibrium level.
Consider various parameter configurations depending on initial wealth distribution ω_1 and h_0

1. No Credit Constraints
 - $\omega'_1 = 1$, $h_0 = 1$, no borrowing/lending in equilibrium
 - $\omega'_1 \rightarrow 1$, $h_0 \rightarrow 1$, borrowing/lending without binding borrowing constraints

2. Always Binding Constraints
 - $\omega'_1 \rightarrow 0$, $h_0 \rightarrow 0$, borrowing and lending with binding borrowing constraint

3. Occasionally Binding Constraints: Intermediate between 1 and 2
 - Taxes active only when shocks hit, and fully anticipated by agents
Case 1: No Credit Constraints

1. Market Borrowing in t_1

2. Overborrowing in t_1

3. H Tax in t_1

4. Welfare Gain Borrower

5. Overborrowing in t_2

6. H Tax in t_2

Parameters
- **Low State**
- **High State**
- Always constrained
- Constrained in t_1 and t_2, A_L
- Constrained in t_2, A_L
- Never constrained
Case 1: No Credit Constraints

- Scope for credit market intervention is (almost) non-existent.
- Planner can undo a bit of market incompleteness with state-contingent taxes, but welfare gains are tiny.
Case 2: Always Binding Constraints

1. Market Borrowing in t_1

2. Overborrowing in t_1

3. H Tax in t_1

4. Welfare Gain Borrower

5. Overborrowing in t_2

6. H Tax in t_2

Legend:
- Red: Low State
- Blue: High State
- Orange: Always constrained
- Yellow: Constrained in $t1$ and $t2$, A_L
- Gray: Constrained in $t2$, A_L
- Green: Never constrained
Case 2: Always Binding Constraints

- Without uncertainty, if planner can only set taxes in period 2, no credit market intervention can improve welfare of both agents. If planner helps borrower, it hurts saver.

- With uncertainty, optimal credit policy is prudential, and countercyclical:

 \[\tau_t = \phi_y (y_t - y) \]

- Planner improves welfare by giving higher weight to pecuniary externalities in bad states than in good states.
Case 3: Constraint Binds Only in Bad State

1. Market Borrowing in t^1

2. Overborrowing in t^1

3. H Tax in t^1

4. Welfare Gain Borrower

5. Overborrowing in t^2

6. H Tax in t^2

Legend:
- Red: Low State
- Blue: High State
- Orange: Always constrained
- Yellow: Constrained in $t1$ and $t2$, A_L
- Grey: Constrained in $t2$, A_L
- Green: Never constrained
Case 3: Constraint Binds Only in Bad State

- Optimal credit policy leans against wind (tax in good state, subsidy in bad) as before.
- Distortion created by tax in good state is small
- Welfare gains afforded by subsidy in bad state are larger
- Overall welfare gains are larger than before
Case 4: Constraint Binds Only in Bad State
Taxes Can Be Set in Period 1 Too

1. Market Borrowing in t_1

2. Overborrowing in t_1

3. H Tax in t_1

4. Welfare Gain Borrower

5. Overborrowing in t_2

6. H Tax in t_2

- **Low State**
- **High State**
- **Always constrained**
- **Constrained in t_1 and t_2, A_L**
- **Constrained in t_2, A_L**
- **Never constrained**

100\(^\circ\)\) Welfare change
Case 4: Constraint Binds Only in Bad State
Taxes Can Be Set in Period 1 Too

- Optimal credit policy in period 2 looks similar.
- In period 1, if uncertainty is small, planner corrects externalities on time 1 with subsidies that relax constraints today – underborrowing ex ante
- In period 1, if uncertainty is large, planner has a stronger macroprudential motive and taxes housing demand today to prevent drop in asset prices tomorrow – overborrowing ex ante –
Case 4 and the Housing Crisis

Case 4 captures some elements and discussions on the housing crisis

- Before the crisis (t1, low σ), perception that risk was low \rightarrow subsidize housing (panel 3, low σ).

- During the crisis (t2, low state): Immediate action is to subsidize housing (mortgage relief, support house prices).

- After the crisis (t1, high σ), discussion of new policy framework, perception that risks are not so low after all.

- Policies discussed: macro-prudential policies, taxing housing.

- Policy trade-offs in a crisis with high σ: subsidize (mitigate current crisis) vs. tax (mitigate future crisis).
Infinite Horizon Model

Do these results carry over to more standard macro models? Yes

- Set up infinite-horizon version of the model with uncertainty, evaluate welfare

- Economy similar to three-period version, except
 - Add variable capital for additional realism
 - Technology A_t follow an AR(1) process:

 $$\ln A_t = 0.95 \ln A_{t-1} + 0.0125 \varepsilon_t, \quad \varepsilon \sim N(0, 1)$$

- Create motive for borrowing through different discount factors. Two groups of borrowers and savers of equal size.
Borrower’s problem

\[
\max E_0 \sum_{t=0}^{\infty} \beta^t (\log c_t) \\
\text{s.t } c_t + q_t h_t + R_{t-1} b_{t-1} = A_t h_{t-1}^\gamma + q_t h_{t-1} + b_t \\
\text{and to } b_t \leq m_h q_t h_t
\]

Saver’s problem

\[
\max E_0 \sum_{t=0}^{\infty} \beta'^t (\log c'_t) \\
\text{s.t } c'_t + k'_t + q_t h'_t + R_t b'_{t-1} = A_t k'_{t-1} h'_{t-1} + q_t h'_{t-1} + b'_t + (1 - \delta) k'_{t-1}
\]

Market clearing

\[
b_t + b'_t = 0 \text{ and } h_t + h'_t = 1
\]
Infinite Horizon Model: Taxes

Borrower’s problem (tax on housing holdings, rebated lump-sum)

\[\begin{align*} s.t \quad & c_t + q_t(1 + \tau_t)h_t + R_{t-1}b_{t-1} = A_t h_{t-1}^\gamma + q_t h_{t-1} + b_t + T_t \\ \text{where} \quad & \tau_t = \varepsilon \ln A_t \\ & T_t = \tau_t q_t h_t \end{align*} \]

Tax is levied on the borrower only.
Tax only changes the borrower’s housing accumulation equation.
Model Equilibrium Conditions

\[\frac{1}{c_t} = \beta R_t \frac{1}{c_{t+1}} + \lambda_t \]
\[\lambda_t \left(b_t - mq_t h_t \right) = 0 \]
\[\frac{q_t \left(1 + \tau_t\right)}{c_t} = \beta \frac{1}{c_{t+1}} \left(q_{t+1} + \gamma \frac{y_{t+1}}{h_t} \right) + \lambda_t m_h q_t \]
\[\frac{1}{c_t'} = \beta' R_t \frac{1}{c'_{t+1}} \]
\[\frac{q_t}{c_t'} = \beta' \frac{1}{c'_{t+1}} \left(q_{t+1} + \gamma \frac{y'_{t+1}}{h'_t} \right) \]
\[\frac{1}{c_t'} = \beta' \left(\alpha \frac{y_{t+1}}{k'_t} + 1 - \delta \right) \frac{1}{c'_{t+1}} \]
\[b_t = c_t + q_t h_t + R_{t-1} b_{t-1} - y_t + q_t h_{t-1} \]
\[c_t + c'_t + k'_t = y_t + y'_{t} + (1 - \delta) k'_{t-1} \]
Calibration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>0.9865</td>
</tr>
<tr>
<td>β'</td>
<td>0.99</td>
</tr>
<tr>
<td>γ</td>
<td>0.3</td>
</tr>
<tr>
<td>γ'</td>
<td>0.1</td>
</tr>
<tr>
<td>α</td>
<td>0.2</td>
</tr>
<tr>
<td>δ</td>
<td>0.025</td>
</tr>
<tr>
<td>m</td>
<td>0.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Annual Target</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wealth/GDP</td>
<td>3</td>
</tr>
<tr>
<td>Debt/GDP</td>
<td>2</td>
</tr>
<tr>
<td>Stdev log GDP</td>
<td>4.5 percent</td>
</tr>
<tr>
<td>Stdev C borrowers</td>
<td>6.7 percent</td>
</tr>
<tr>
<td>Stdev C savers</td>
<td>2.8 percent</td>
</tr>
<tr>
<td>Frequency of binding constraint</td>
<td>55 percent</td>
</tr>
</tbody>
</table>
Figure: Responses in deviation from stochastic steady state of no tax economy
Policy Functions

1. House Price
2. Housing
3. Borrowing
4. C Borrower

Figure: Optimal Choices as a function of A
Pareto-Improving Housing Tax

We evaluate how welfare of savers and borrowers varies for different values of the elasticity ϵ of tax rate to the aggregate state.

Can we find a Pareto-improving tax? Yes!

A tax with an elasticity of 0.02 to aggregate productivity yields welfare gains 0.1 percent of lifetime consumption for the borrower, holding savers welfare unchanged.

Formally, letting Z_t being the state:

$$Z_t = \{ R_{t-1} b_{t-1}, k_{t-1}, h_{t-1}, A_t \}$$

welfare of borrowers and savers is:

$$W = W (Z_t; \epsilon), \text{ and } W' = W' (Z_t; \epsilon)$$
How Welfare Varies with the Tax
Impulse Responses with Tax

Figure: Responses in deviation from stochastic steady state of no tax economy
Policy Functions with Tax

Figure: Optimal Choices as a function of A
Properties of The Pareto-Improving Tax

Reduces the covariance of consumption and asset prices in a recession, thus increasing asset prices on average

Subsidizes borrowers in a recession, but taxes them in a boom
The Pareto-Improving Tax

“Property” Tax is levied as a % of the value of borrowers’ housing.

From the borrower’s budget constraint,
\[c_t + (1 + \tau_t) q_t h_t = \text{income}, \]
a tax \(\tau_t \) raises the holding cost of housing by \(100 \times \tau_t \) percent.

An \(x \) percent negative productivity shock thus calls for a reduction in the holding cost of housing of \(100 \times \epsilon \times x \) percent.

With \(\epsilon = 0.02 \) and \(x = 0.03 \), the reduction in the housing holding cost is thus \(100 \cdot 0.02 \cdot 0.03 = 0.06\% \).

For a house of $300,000, this corresponds to a subsidy of about \(180 \cdot 4 = $720 \) per year in a typical recession.
Figure: Frontier starting from different state: boom, normal times, recession
Conclusions

- Optimal Credit Policy leans against the wind:
 Ex post pecuniary externalities are corrected with credit market subsidies.
 Ex ante pecuniary externalities are corrected with “macroprudential” taxes.

- Economies with credit frictions feature underborrowing or overborrowing depending on the severity of financing constraints.

- A simple countercyclical housing tax can improve social welfare.