Chapter 7: Economic Growth part 1

- Learn the closed economy Solow model
- See how a country’s standard of living depends on its saving and population growth rates
- Learn how to use the “Golden Rule” to find the optimal savings rate and capital stock

Importance of Economic Growth

In the poorest one-fifth of all countries,
- daily caloric intake is 1/3 lower than in the richest fifth
- the infant mortality rate is 200 per 1000 births, compared to 4 per 1000 births in the richest fifth.

- Even in rich countries, small differences can make a difference over long periods of time
- \(1.015^{50}=2.10\)
- \(1.03^{50}=4.38\)

Source: Sala-i-Martin, NBER WP 8933, 2002
1. The Solow Model

looks at determinants of economic growth and the standard of living in the long run

MAIN ASSUMPTIONS OF THE MODEL

1. \(K \) is no longer fixed: investment causes it to grow, depreciation causes it to shrink.
2. \(L \) is no longer fixed: population growth
3. The consumption function is simpler.
4. No \(G \) or \(T \)

The production function

- In aggregate terms: \(Y = F(K, L) \)

Define: \(\frac{Y}{L} = \text{output per worker} \), \(\frac{K}{L} = \text{capital per worker} \)

- Assume constant returns to scale:
 \(zY = F(zK, zL) \) for any \(z > 0 \)

- Pick \(z = \frac{1}{L} \) Then
 \(\frac{Y}{L} = F(\frac{K}{L}, 1) \)
 \(\frac{y}{l} = F(k, 1) \)
 \(y = f(k) \) where \(f(k) = F(k, 1) \)

Building Blocks of the model

1. NATIONAL INCOME IDENTITY
 \(Y = C + I \rightarrow y = C + I \) (in per worker terms)

2. CONSUMPTION AND SAVINGS FUNCTION
 \(C = (1-s)Y \rightarrow c = (1-s)y \)
 \(\text{saving} = sy \)

3. EQUILIBRIUM: \(y - c = sy = sf(k) = i \)
4. **WHAT IS INVESTMENT?**
Assume a fraction \(\delta \) of capital depreciates every period.

Investment = Change in capital stock + depreciation

\[
i = \Delta k + \delta k
\]

\[
\Delta k = s f(k) - \delta k
\]

Determines behavior of \(k \) over time, which determines all other endogenous variables.

E.g., income per person: \(y = f(k) \)

consumption per person: \(c = (1-s) f(k) \)

The steady state

\[
\Delta k = s f(k) - \delta k
\]

If investment is just enough to cover depreciation \([s f(k) = \delta k] \),
then \(\Delta k = 0 \).

\(k' \): **steady state capital stock**
A numerical example

1. Production function (aggregate):
 \[Y = F(K, L) = \sqrt{K} \times L = K^{1/2} L^{1/2} \]

2. Rewrite \(y = Y/L \) and \(k = K/L \) to get
 \[y = f(k) = k^{1/2} \]

3. Assume:
 - \(s = 0.3 \)
 - \(\delta = 0.1 \)
 - initial value of \(k = 4.0 \)

Approaching the Steady State: A Numerical Example

Assumptions: \(y = \sqrt{k}; \ s = 0.3; \ \delta = 0.1; \) initial \(k = 4.0 \)

<table>
<thead>
<tr>
<th>Year</th>
<th>(k)</th>
<th>(y)</th>
<th>(c)</th>
<th>(i)</th>
<th>(\delta k)</th>
<th>(\delta k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.000</td>
<td>2.000</td>
<td>1.400</td>
<td>0.600</td>
<td>0.400</td>
<td>0.200</td>
</tr>
<tr>
<td>2</td>
<td>4.200</td>
<td>2.049</td>
<td>1.435</td>
<td>0.615</td>
<td>0.420</td>
<td>0.195</td>
</tr>
<tr>
<td>3</td>
<td>4.395</td>
<td>2.096</td>
<td>1.467</td>
<td>0.629</td>
<td>0.440</td>
<td>0.189</td>
</tr>
<tr>
<td>4</td>
<td>4.584</td>
<td>2.141</td>
<td>1.499</td>
<td>0.642</td>
<td>0.458</td>
<td>0.184</td>
</tr>
<tr>
<td>10</td>
<td>5.602</td>
<td>2.367</td>
<td>1.657</td>
<td>0.710</td>
<td>0.560</td>
<td>0.150</td>
</tr>
<tr>
<td>25</td>
<td>7.351</td>
<td>2.706</td>
<td>1.894</td>
<td>0.812</td>
<td>0.732</td>
<td>0.080</td>
</tr>
<tr>
<td>100</td>
<td>8.962</td>
<td>2.994</td>
<td>2.096</td>
<td>0.898</td>
<td>0.896</td>
<td>0.002</td>
</tr>
<tr>
<td>⋮</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>∞</td>
<td>9.000</td>
<td>3.000</td>
<td>2.100</td>
<td>0.900</td>
<td>0.900</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Exercise: solve for the steady state

Continue to assume
\(s = 0.3, \ \delta = 0.1, \) and \(y = k^{1/2} \)

Use the equation of motion
\[\Delta k = sf(k) - \delta k \]
to solve for the steady-state values of \(k, y, \) and \(c. \)
Solution to exercise:

\[\Delta k = 0 \]
def. of steady state

\[sf(k^*) = \delta k^* \]
eq'n of motion with \(\Delta k = 0 \)

\[0.3\sqrt{k^*} = 0.1k^* \]
using assumed values

\[3 = \frac{k^*}{\sqrt{k^*}} = \sqrt{k^*} \]

Solve to get: \(k^* = 9 \) and \(y^* = \sqrt{k^*} = 3 \)

Finally, \(c^* = (1 - s)y^* = 0.7 \times 3 = 2.1 \)

An increase in the saving rate

Prediction:

- Higher \(s \) \(\Rightarrow \) higher \(k^* \).
- And since \(y = f(k) \),
 higher \(k^* \) \(\Rightarrow \) higher \(y^* \).
- Countries with higher rates of saving and investment will have higher levels of capital and income per worker in the long run.
- Supported by data
2. The Golden Rule: introduction

- Different s lead to different steady states. How do we know which is the "best" steady state?
- → "best" steady state has highest possible consumption per person: $c^* = (1 - s)f(k^*)$
- An increase in s
 - leads to higher k^* and y^*, which may raise c^*
 - reduces consumption's share of income $(1 - s)$, which may lower c^*
- So, how do we find the s and k^* that maximize c^*?

The Golden Rule Capital Stock

k^*_gold = the Golden Rule level of capital, the steady state value of k that maximizes consumption.

Express c^* in terms of k^*:

$c^* = y^* - i^* = f(k^*) - i^* = f(k^*) - \delta k^*$

The Golden Rule Capital Stock

$c^* = f(k^*) - \delta k^*$

biggest where

MPK = δ

steady-state capital per worker, K^*
The transition to the Golden Rule Steady State

- The economy does NOT have a tendency to move toward the Golden Rule steady state.
- Achieving the Golden Rule requires that policymakers adjust \(s \).
- This adjustment leads to a new steady state with higher consumption.
- But what happens to consumption during the transition to the Golden Rule?

Starting with too much capital

If \(k' > k_{\text{gold}} \)
then increasing \(c' \) requires a fall in \(s \).
In the transition to the Golden Rule, consumption is higher at all points in time.

Starting with too little capital

If \(k' < k_{\text{gold}} \)
then increasing \(c' \) requires an increase in \(s \).
Future generations enjoy higher consumption, but the current one experiences an initial drop in consumption.
3. Population Growth

- Assume that the population—and labor force—grow at rate \(n \). \((n \) is exogenous)\n
\[
\frac{\Delta L}{L} = n
\]

Then:\n
\((\delta + n)k \) = break-even investment.\n
\(\delta k \) : to replace capital as it wears out\n\(n k \) : to equip new workers with capital

Population growth

\[
\Delta k = s f(k) - (\delta + n)k
\]

An increase in \(n \) leads to a lower steady-state \(k \).

Countries with higher population growth rates will have lower levels \(k \) and \(y \) in the long run.

The Golden Rule with Population Growth

To find the Golden Rule capital stock, we again express \(c^* \) in terms of \(k^* \):

\[
c^* = y^* - \bar{r} = f(k^*) - (\delta + n)k^*
\]

\(c^* \) is maximized when \(\text{MPK} = \delta + n \)

or: \(\text{MPK} - \delta = n \)