A Proof of the Central Limit Theorem.

Notation. Let X_1,\ldots,X_n be RV’s.

Let $\sum_n X$ denote the sum $X_1 + \ldots + X_n$, and let \overline{X}_n denote the average $\left(\sum_n X\right)/n$.

When there is no ambiguity, we drop the subscript and write $\sum X$ or \overline{X}.

Lemma 1 (results we have shown)

Let X_1,\ldots,X_n be IID with common mean μ and variance σ^2 ($\sigma > 0$), and let $Y_i = \frac{X_i - \mu}{\sigma}$. Then

a) Y_1,\ldots,Y_n are IID with common mean 0 and variance 1 (and hence standard deviation 1)

b) $M_{Y_i}^\prime(0) = 0$ (since $M_{Y_i}^\prime(0) = E(Y_i)$)

c) $W_n = \frac{1}{\sqrt{n}} \sum_n Y$ has mean $\frac{1}{\sqrt{n}} \sum E(Y_i) = 0$ and variance $(\frac{1}{\sqrt{n}})^2 \sum \text{Var}(Y_i) = \frac{1}{n}(n) = 1$.

Lemma 2. (results from calculus)

a) Let $f^\prime(t)$ be continuous for $-c < t < c$. Then, for all such t between $-c$ and c,

$$f(t) = f(0) + f'(0)t + \frac{t^2}{2!} f''(r) \text{ for some } r \text{ with } |r| < |t|.$$

b) Let g be a function such that $\lim_{n \to \infty} g(n) = B$. Then $\lim_{n \to \infty} \left(1 + \frac{g(n)}{n}\right)^n = e^B$.

proof. : (a) is just Taylor’s Theorem for $a = 0$ [aka McLaurin series] and $n = 1$.

b) Let $L = \lim_{n \to \infty} \left(1 + \frac{g(n)}{n}\right)^n$. Let h denote $\frac{g(n)}{n}$, i.e. $h = \frac{g(n)}{n}$.

Then $\ln(L) = \lim_{n \to \infty} \ln(1 + \frac{g(n)}{n}) = \lim_{n \to \infty} g(n) \frac{\ln(1 + \frac{g(n)}{n})}{g(n)} = \lim_{n \to \infty} \ln(1 + \frac{g(n)}{n}) = \lim_{n \to \infty} \ln(1 + \frac{g(n)}{n}) = \lim_{n \to \infty} \ln(1 + h) / h = B\lim_{h \to 0} \ln(1 + h) / h = B\ln'(1) = B(1) = B$. Thus $L = e^B$.

Lemma 3. If W_1, W_2, \ldots are RV’s such that for all t in some open interval around 0,

$$\lim_{n \to \infty} M_{W_n}(t) = M_W(t), \text{ then for all real numbers } b, \lim_{n \to \infty} F_{W_n}(b) = F_W(b).$$

proof. This result requires more real analysis than we have available, so we’ll have to accept this result.
The Central Limit Theorem.

Let \(X_1, X_2, \ldots \) be any infinite sequence of IID RV’s with (common) mean \(\mu \) and variance \(\sigma^2 \). Let \(Z \) be a standard, normal RV, i.e. \(Z \sim \text{Norm}(0,1) \). Then, for all real numbers \(b \),

\[
\begin{align*}
\text{[Sum version]} \quad & \lim_{n \to \infty} P\left(\frac{\sum_{i=1}^{n} X_i - n\mu}{\sqrt{n}\sigma} < b \right) = P(Z < b), \text{ i.e. } \lim_{n \to \infty} F_{\frac{\sum_{i=1}^{n} X_i - n\mu}{\sqrt{n}\sigma}}(b) = F_Z(b), \text{ or equivalently,} \\
\text{[Mean version]} \quad & \lim_{n \to \infty} P\left(\frac{\bar{X}_n - \mu}{(\sigma / \sqrt{n})} < b \right) = P(Z < b), \text{ i.e. } \lim_{n \to \infty} F_{\frac{\bar{X}_n - \mu}{(\sigma / \sqrt{n})}}(b) = F_Z(b). \text{ in other words,}
\end{align*}
\]

The random variable

\[
\frac{\sum_{i=1}^{n} X_i - n\mu}{\sqrt{n}\sigma} = \frac{\bar{X}_n - \mu}{(\sigma / \sqrt{n})}
\]

approaches a standard normal distribution as \(n \to \infty \).

proof. We give the proof only for \(X \)'s for which the mgf converges in some neighborhood of 0, in particular, all moments of \(X \) are finite. The theorem holds as stated, but the more general proof involves complex analysis.

First define \(Y_i = \frac{X_i - \mu}{\sigma} \), then \(Y_1, Y_2, \ldots \) are IID with mean 0 and variance 1.

By Lemma 1b and 2a, \(M_Y(t) = 1 + 0t + \frac{t^2}{2!} M_Y''(r) = 1 + \frac{t^2}{2!} M_Y''(r) \) with \(r = r(t) \) satisfying \(|r| < |t| \).

Let \(W_n = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} Y_i \); then \(M_{W_n}(t) = M_Y\left(\frac{t}{\sqrt{n}}\right)^n = (1 + \frac{t^2}{2n} M_Y''(s))^n \) with \(s = r\left(\frac{t}{\sqrt{n}}\right) \Rightarrow s| < \frac{|t|}{\sqrt{n}} \).

As \(n \to \infty \), then \(s \to 0 \) and so by continuity,

\[
\lim_{n \to \infty} M_Y''(s) = M_Y''(0) = E(Y^2) = \text{Var}(Y) + E(Y)^2 = 1 + 0^2 = 1
\]

Let \(g(n) = \frac{t^2}{2} M_Y''\left(\frac{t}{\sqrt{n}}\right) \), then \(\lim_{n \to \infty} g(n) = \frac{t^2}{2} (1) = \frac{t^2}{2} \).

By Lemma 2b, \(\lim_{n \to \infty} M_{W_n}(t) = \lim_{n \to \infty} \left(1 + \frac{g(n)}{n}\right)^n = e^{\frac{t^2}{2}} = M_Z(t) \) where \(Z \sim \text{Norm}(0,1) \).

By Lemma 3, \(\lim_{n \to \infty} F_{W_n}(b) = F_Z(b) \), i.e.

\[
P(Z < b) = \lim_{n \to \infty} P(W_n < b) = \lim_{n \to \infty} P\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} Y_i < b\right) = \lim_{n \to \infty} P\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma}\right) < b\right) = \lim_{n \to \infty} P\left(\frac{\sum_{i=1}^{n} X_i - n\mu}{\sigma \sqrt{n}} < b\right)
\]

QED.