IN THIS CHAPTER, YOU WILL LEARN:

- What determines the economy’s total output/income
- How the prices of the factors of production are determined
- How total income is distributed
- What determines the demand for goods and services
- How equilibrium in the goods market is achieved
Outline of model

A closed economy, market-clearing model

- Supply side
 - factor markets (supply, demand, price)
 - determination of output/income

- Demand side
 - determinants of C, I, and G

- Equilibrium
 - goods market
 - loanable funds market
Factors of production

\(K = \text{capital:} \)

\(L = \text{labor:} \)

tools, machines, and structures used in production

the physical and mental efforts of workers
The production function: $Y = F(K, L)$

- Shows how much output (Y) the economy can produce from K units of capital and L units of labor
- Reflects the economy’s level of technology
- Exhibits constant returns to scale
Returns to scale: a review

Initially \(Y_1 = F(K_1, L_1) \)

Scale all inputs by the same factor \(z \):

\[K_2 = zK_1 \quad \text{and} \quad L_2 = zL_1 \]

(e.g., if \(z = 1.2 \), then all inputs are increased by 20%)

What happens to output, \(Y_2 = F(K_2, L_2) \)?

- If constant returns to scale, \(Y_2 = zY_1 \)
- If increasing returns to scale, \(Y_2 > zY_1 \)
- If decreasing returns to scale, \(Y_2 < zY_1 \)
Assumptions

1. Technology is fixed.

2. The economy’s supplies of capital and labor are fixed at:

\[K = \bar{K} \quad \text{and} \quad L = \bar{L} \]
Determining GDP

Output is determined by the fixed factor supplies and the fixed state of technology:

\[\bar{Y} = F(\bar{K}, \bar{L}) \]
The distribution of national income

- determined by factor prices, the prices per unit firms pay for the factors of production
 - wage = price of L
 - rental rate = price of K
Notation

\[W \] = nominal wage
\[R \] = nominal rental rate
\[P \] = price of output
\[W/P \] = real wage
 (measured in units of output)
\[R/P \] = real rental rate
How factor prices are determined

- Factor prices are determined by supply and demand in factor markets.
- Recall: Supply of each factor is fixed.
- What about demand?
Demand for labor

- Assume markets are competitive: each firm takes W, R, and P as given.

- Basic idea:
 A firm hires each unit of labor if the cost does not exceed the benefit.
 - cost = real wage
 - benefit = marginal product of labor
Marginal product of labor (MPL)

- Definition:
 The extra output the firm can produce using an additional unit of labor (holding other inputs fixed):

\[MPL = F(K, L + 1) - F(K, L) \]
MPL and the production function

As more labor is added, **MPL** falls.

Slope of the production function equals **MPL**.
Diminishing marginal returns

- As one input is increased (holding other inputs constant), its marginal product falls.

- Intuition:
 If \(L \) increases while holding \(K \) fixed
 machines per worker falls,
 worker productivity falls.
MPL and the demand for labor

Each firm hires labor up to the point where $\text{MPL} = \frac{W}{P}$.

- Units of output
- Real wage
- Quantity of labor demanded

Diagram:
- MPL, Labor demand
- Units of labor, L
The equilibrium real wage

The real wage adjusts to equate labor demand with supply.

Equilibrium real wage

Units of output

Labor supply

MPL, Labor demand

Units of labor, L

L
Determining the rental rate

- We have just seen that $MPL = W/P$.
- The same logic shows that $MPK = R/P$:
 - Diminishing returns to capital: MPK falls as K rises
 - The MPK curve is the firm’s demand curve for renting capital.
 - Firms maximize profits by choosing K such that $MPK = R/P$.
The equilibrium real rental rate

The real rental rate adjusts to equate demand for capital with supply.

The diagram illustrates the equilibrium real rental rate (R/P) and its relationship with the supply of capital (K) and the marginal product of capital (MPK). The demand for capital curve is shown as a downward sloping line, indicating that as the supply of capital increases, the demand for capital decreases, and vice versa, to maintain equilibrium at the real rental rate.
The neoclassical theory of distribution

- States that each factor input is paid its marginal product
- A good starting point for thinking about income distribution
How income is distributed to L and K

Total labor income = \(\frac{W}{P} \bar{L} = MPL \times \bar{L} \)

Total capital income = \(\frac{R}{P} K = MPK \times K \)

If production function has constant returns to scale, then

\[\bar{Y} = MPL \times \bar{L} + MPK \times K \]
How income is distributed to L and K

Example of Euler’s Theorem. To see this, use definition of CRS:

$$zY = F(zL, zK)$$

Differentiate with respect to z:

$$Ydz = F_1(zL, zK)Ldz + F_2(zL, zK)Kdz$$

and set $z = 1$ to obtain:

$$Y = F_1(L, K)L + F_2(L, K)K$$
How income is distributed to L and K

\[Y = F_1(L, K)L + F_2(L, K)K \]

\[= (MPL \times L) + (MPK \times K) \]

where

\[F_1(L, K) = MPL \]

\[F_2(L, K) = MPK \]
How income is distributed to L and K

What About Profit? Define economic profit as:

Economic Profit = $Y - \left(\frac{W}{P} \times L \right) - \left(\frac{R}{P} \times K \right)$

Economic Profit = $Y - (MPL \times L) - (MPK \times K)$

*If production function is CRS, then:

$Y = (MPL \times L) + (MPK \times K)$

so that Economic Profit = 0
The ratio of labor income to total income in the United States, 1960–2010
The Cobb-Douglas production function

- The Cobb-Douglas production function has constant factor shares:

 \[\alpha = \text{capital’s share of total income} : \]
 \[\text{capital income} = MPK \times K = \alpha Y \]
 \[\text{labor income} = MPL \times L = (1 - \alpha) Y \]

- The Cobb-Douglas production function is:

 \[Y = AK^\alpha L^{1-\alpha} \]

 where \(A \) represents the level of technology.
The Cobb-Douglas production function

- Each factor’s marginal product is proportional to its average product:

\[
MPK = \alpha \ A \ K^{\alpha-1} \ L^{1-\alpha} = \frac{\alpha Y}{K}
\]

\[
MPL = (1 - \alpha) \ A \ K^\alpha \ L^{-\alpha} = \frac{(1 - \alpha)Y}{L}
\]
Theory: wages depend on labor productivity U.S. data:

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Growth Rate of Labor Productivity</th>
<th>Growth Rate of Real Wages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960–2016</td>
<td>2.0%</td>
<td>1.8%</td>
</tr>
<tr>
<td>1960–1973</td>
<td>3.0</td>
<td>2.7</td>
</tr>
<tr>
<td>1973–1995</td>
<td>1.5</td>
<td>1.2</td>
</tr>
<tr>
<td>1995–2010</td>
<td>2.6</td>
<td>2.2</td>
</tr>
<tr>
<td>2010–2016</td>
<td>0.5</td>
<td>0.9</td>
</tr>
</tbody>
</table>
The growing gap between rich & poor

Inequality has been rising in recent decades.

Gini coefficient
Explanations for rising inequality

1. Rise in capital’s share of income, since capital income is more concentrated than labor income

2. From *The Race Between Education and Technology* by Goldin & Katz
 - Technological progress has increased the demand for skilled relative to unskilled workers.
 - Due to a slowdown in expansion of education, the supply of skilled workers has not kept up.
 - Result: Rising gap between wages of skilled and unskilled workers.
Demand for goods and services

Components of aggregate demand:

\[
\begin{align*}
C &= \text{consumer demand for g&s} \\
I &= \text{demand for investment goods} \\
G &= \text{government demand for g&s} \\
\text{(closed economy: no } NX)
\end{align*}
\]
Consumption, C

- **Disposable income** is total income minus total taxes: $Y - T$.

- Consumption function: $C = C(Y - T)$

- Definition: **Marginal propensity to consume (MPC)** is the change in C when disposable income increases by one dollar.
The consumption function

\[C = C(Y - T) \]

The slope of the consumption function is the **MPC**.
Investment, I

- The investment function is $I = I(r)$
- where r denotes the real interest rate, the nominal interest rate corrected for inflation.

- The real interest rate is:
 - the cost of borrowing
 - the opportunity cost of using one’s own funds to finance investment spending

So, I depends negatively on r
Spending on investment goods depends negatively on the real interest rate.
Government spending, G

- $G = \text{govt spending on goods and services}$
- G excludes transfer payments (e.g., Social Security benefits, unemployment insurance benefits)
- Assume government spending and total taxes are exogenous:

$$G = \bar{G} \quad \text{and} \quad T = \bar{T}$$
The market for goods & services

- Aggregate demand: \[C(\bar{Y} - \bar{T}) + I(r) + \bar{G} \]

- Aggregate supply: \[\bar{Y} = F(K, L) \]

- Equilibrium: \[\bar{Y} = C(\bar{Y} - \bar{T}) + I(r) + \bar{G} \]

The real interest rate adjusts to equate demand with supply.
The loanable funds market

- A simple supply–demand model of the financial system.
- One asset: “loanable funds”
 - demand for funds: investment
 - supply of funds: saving
 - “price” of funds: real interest rate
Demand for funds: investment

The demand for loanable funds . . .

- comes from investment: Firms borrow to finance spending on plant & equipment, new office buildings, etc. Consumers borrow to buy new houses.

- depends negatively on r, the “price” of loanable funds (cost of borrowing).
The investment curve is also the demand curve for loanable funds.
Supply of funds: saving

- The supply of loanable funds comes from saving:
 - Households use their saving to make bank deposits, purchase bonds and other assets. These funds become available to firms to borrow and finance investment spending.
 - The government may also contribute to saving if it does not spend all the tax revenue it receives.
Types of saving

Private saving = \((Y - T) - C \)
Public saving = \(T - G \)
National saving, \(S \)
 = private saving + public saving
 = \((Y - T) - C + T - G \)
 = \(Y - C - G \)
Notation: \(\Delta = \text{change in a variable} \)

- For any variable \(X \), \(\Delta X = \text{“change in } X \text{”} \)
 \(\Delta \) is the Greek (uppercase) letter \(Delta \)

Examples:
- If \(\Delta L = 1 \) and \(\Delta K = 0 \), then \(\Delta Y = MPL \).
 More generally, if \(\Delta K = 0 \), then \(MPL = \frac{\Delta Y}{\Delta L} \).
- \(\Delta(Y - T) = \Delta Y - \Delta T \), so
 \[\Delta C = MPC \times (\Delta Y - \Delta T) \]
 \[= MPC \Delta Y - MPC \Delta T \]
Budget surpluses and deficits

- If $T > G$, **budget surplus** $= (T - G)$

 $= $ public saving.

- If $T < G$, **budget deficit** $= (G - T)$

 and public saving is negative.

- If $T = G$, **balanced budget**, public saving $= 0$.

- The U.S. government finances its deficit by issuing Treasury bonds—i.e., borrowing.
U.S. federal government surplus/deficit, 1940-2016
U.S. federal government debt, 1940-2016

The graph illustrates the percentage of GDP for U.S. federal government debt from 1940 to 2016. The debt started at approximately 110% of GDP in 1940, decreased sharply to around 50% by 1950, and then continued to decline until it reached its lowest point around 1970. After 1970, the debt percentage increased gradually, with some fluctuations, and reached around 120% of GDP in 2016.
Loanable funds supply curve

National saving does not depend on \(r \), so the supply curve is vertical.

\[
\bar{S} = \bar{Y} - C(\bar{Y} - \bar{T}) - \bar{G}
\]
Loanable funds market equilibrium

Equilibrium real interest rate

Equilibrium level of investment

\[S = Y - C(Y - T) - G \]
The special role of r

r adjusts to equilibrate the goods market and the loanable funds market simultaneously:

If L.F. market in equilibrium, then

\[Y - C - G = I \]

Add \((C + G)\) to both sides to get

\[Y = C + I + G \] (goods market eq’m)

Thus,

Eq’m in L.F. market \iff Eq’m in goods market
Mastering the loanable funds model

Things that shift the saving curve:

- public saving
 - fiscal policy: changes in G or T
- private saving
 - preferences
 - tax laws that affect saving
 - 401(k)
 - IRA
 - replace income tax with consumption tax
CASE STUDY: The Reagan Deficits

- Reagan policies during early 1980s:
 - increases in defense spending: $\Delta G > 0$
 - big tax cuts: $\Delta T < 0$

- Both policies reduce national saving:

$$\bar{S} = \bar{Y} - C(\bar{Y} - \bar{T}) - \bar{G}$$

$\uparrow \bar{G} \Rightarrow \downarrow \bar{S}$

$\downarrow \bar{T} \Rightarrow \uparrow C \Rightarrow \downarrow \bar{S}$
CASE STUDY: The Reagan Deficits

1. The increase in the deficit reduces saving...

2. ...which causes the real interest rate to rise...

3. ...which reduces the level of investment.
Are the data consistent with these results?

<table>
<thead>
<tr>
<th></th>
<th>1970s</th>
<th>1980s</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T - G$</td>
<td>-2.2</td>
<td>-3.9</td>
</tr>
<tr>
<td>S</td>
<td>19.6</td>
<td>17.4</td>
</tr>
<tr>
<td>r</td>
<td>1.1</td>
<td>6.3</td>
</tr>
<tr>
<td>I</td>
<td>19.9</td>
<td>19.4</td>
</tr>
</tbody>
</table>

$T-G$, S, and I are expressed as a percent of GDP
All figures are averages over the decade shown.
Mastering the loanable funds model

(continued)

Things that shift the investment curve:

- some technological innovations
 - to take advantage of some innovations, firms must buy new investment goods
- tax laws that affect investment
 - e.g., investment tax credit
An increase in investment demand

...raises the interest rate.

But the equilibrium level of investment cannot increase because the supply of loanable funds is fixed.

An increase in desired investment...
Saving and the interest rate

- Why might saving depend on r?
- How would the results of an increase in investment demand be different?
 - Would r rise as much?
 - Would the equilibrium value of I change?
An increase in investment demand when saving depends on r

An increase in investment demand raises r, which induces an increase in the quantity of saving, which allows I to increase.