IN THIS CHAPTER, YOU WILL LEARN:

- the IS curve and its relation to:
 - the Keynesian cross
 - the loanable funds model
- the LM curve and its relation to:
 - the theory of liquidity preference
- how the IS-LM model determines income and the interest rate in the short run when P is fixed
Context

- Chapter 10 introduced the model of aggregate demand and aggregate supply.

Long run:
- prices flexible
- output determined by factors of production & technology
- unemployment equals its natural rate

Short run:
- prices fixed
- output determined by aggregate demand
- unemployment negatively related to output
Context

- This chapter develops the *IS-LM* model, the basis of the aggregate demand curve.
- We focus on the short run and assume the price level is fixed (so the *SRAS* curve is horizontal).
- Chapters 11 and 12 focus on the closed-economy case. Chapter 13 presents the open-economy case.
The Keynesian cross

- A simple closed-economy model in which income is determined by expenditure. *(due to J. M. Keynes)*

- Notation:
 - \(I \) = planned investment
 - \(PE = C + I + G \) = planned expenditure
 - \(Y \) = real GDP = actual expenditure

- Difference between actual & planned expenditure = unplanned inventory investment
Elements of the Keynesian cross

consumption function: $C = C(Y - T)$

govt policy variables: $G = \bar{G}, \quad T = \bar{T}$

for now, planned investment is exogenous: $I = \bar{I}$

planned expenditure: $PE = C(Y - T) + \bar{I} + \bar{G}$

equilibrium condition:

actual expenditure = planned expenditure

$Y = PE$
Graphing planned expenditure

\[PE = C + I + G \]
Graphing the equilibrium condition

$PE = Y$

planned expenditure

income, output, Y

45°
The equilibrium value of income

\[PE = C + I + G \]

Equilibrium income

\[PE = Y \]
An increase in government purchases

At Y_1, there is now an unplanned drop in inventory…

…so firms increase output, and income rises toward a new equilibrium.

ΔG

$PE_1 = Y_1$

ΔY

$PE_2 = Y_2$

$PE = C + I + G_1$

$PE = C + I + G_2$
Solving for ΔY

\[Y = C + I + G \]

\[\Delta Y = \Delta C + \Delta I + \Delta G \]

\[= \Delta C + \Delta G \]

\[= \text{MPC} \times \Delta Y + \Delta G \]

Collect terms with ΔY on the left side of the equals sign:

\[(1 - \text{MPC}) \times \Delta Y = \Delta G \]

Solve for ΔY:

\[\Delta Y = \left(\frac{1}{1 - \text{MPC}} \right) \times \Delta G \]
The government purchases multiplier

Definition: the increase in income resulting from a $1 increase in G.

In this model, the govt purchases multiplier equals $\frac{\Delta Y}{\Delta G} = \frac{1}{1 - \text{MPC}}$.

Example: If $\text{MPC} = 0.8$, then

$\frac{\Delta Y}{\Delta G} = \frac{1}{1 - 0.8} = 5$

An increase in G causes income to increase 5 times as much!
Why the multiplier is greater than 1

- Initially, the increase in G causes an equal increase in Y: $\Delta Y = \Delta G$.

- But $\uparrow Y \rightarrow \uparrow C$

 \rightarrow further $\uparrow Y$

 \rightarrow further $\uparrow C$

 \rightarrow further $\uparrow Y$

- So the final impact on income is much bigger than the initial ΔG.
An increase in taxes

Initially, the tax increase reduces consumption and therefore PE:

\[\Delta C = -MPC \times \Delta T \]

...so firms reduce output, and income falls toward a new equilibrium

At Y_1, there is now an unplanned inventory buildup...

\[PE_1 = Y_1 \]

\[PE_2 = Y_2 \]
Solving for ΔY

$$\Delta Y = \Delta C + \Delta I + \Delta G$$

eq’m condition in changes

$$= \Delta C$$

I and G exogenous

$$= \text{MPC} \times (\Delta Y - \Delta T)$$

Solving for ΔY:

$$(1 - \text{MPC}) \times \Delta Y = -\text{MPC} \times \Delta T$$

Final result:

$$\Delta Y = \left(\frac{-\text{MPC}}{1 - \text{MPC}} \right) \times \Delta T$$
The tax multiplier

def: the change in income resulting from a $1 increase in T:

$$\frac{\Delta Y}{\Delta T} = \frac{-MPC}{1 - MPC}$$

If $MPC = 0.8$, then the tax multiplier equals

$$\frac{\Delta Y}{\Delta T} = \frac{-0.8}{1 - 0.8} = \frac{-0.8}{0.2} = -4$$
The tax multiplier

...is negative:
A tax increase reduces C, which reduces income.

...is greater than one (in absolute value):
A change in taxes has a multiplier effect on income.

...is smaller than the govt spending multiplier:
Consumers save the fraction $(1 - MPC)$ of a tax cut, so the initial boost in spending from a tax cut is smaller than from an equal increase in G.
NOW YOU TRY
Practice with the Keynesian cross

- Use a graph of the Keynesian cross to show the effects of an increase in planned investment on the equilibrium level of income/output.
At Y_1, there is now an unplanned drop in inventory…

…so firms increase output, and income rises toward a new equilibrium.

$PE_1 = Y_1$

$PE_2 = Y_2$

$PE = C + I_1 + G$

$PE = C + I_2 + G$
The *IS* curve

def: a graph of all combinations of \(r \) and \(Y \) that result in goods market equilibrium

\(i.e. \) actual expenditure (output) = planned expenditure

The equation for the *IS* curve is:

\[
Y = C(Y - T) + I(r) + G
\]
Deriving the IS curve

\[PE = Y \]

\[PE = C + I(r_2) + G \]

\[PE = C + I(r_1) + G \]

\[r \rightarrow \Delta I \rightarrow PE \rightarrow Y \]

\[Y_1 \rightarrow IS \rightarrow Y_2 \]

\[Y_1 \rightarrow IS \rightarrow Y_2 \]
Why the *IS* curve is negatively sloped

- A fall in the interest rate motivates firms to increase investment spending, which drives up total planned spending \((PE)\).
- To restore equilibrium in the goods market, output (a.k.a. actual expenditure, \(Y\)) must increase.
The *IS* curve and the loanable funds model

(a) The L.F. model

(b) The *IS* curve
Fiscal Policy and the *IS* curve

- We can use the *IS-LM* model to see how fiscal policy (*G* and *T*) affects aggregate demand and output.

- Let’s start by using the Keynesian cross to see how fiscal policy shifts the *IS* curve…
Shifting the *IS* curve: ΔG

At any value of r,
$\uparrow G \rightarrow \uparrow PE \rightarrow \uparrow Y$

...so the *IS* curve shifts to the right.

The horizontal distance of the *IS* shift equals

$\Delta Y = \frac{1}{1-\text{MPC}} \Delta G$
NOW YOU TRY

Shifting the IS curve: ΔT

- Use the diagram of the Keynesian cross or loanable funds model to show how an increase in taxes shifts the IS curve.
- If you can, determine the size of the shift.
ANSWERS

Shifting the IS curve: ΔT

At any value of r,
$\uparrow T \rightarrow \downarrow C \rightarrow \downarrow PE$

...so the IS curve shifts to the left.

The horizontal distance of the IS shift equals

$$\Delta Y = -\frac{MPC}{1-MPC} \Delta T$$
The theory of liquidity preference

- Due to John Maynard Keynes.
- A simple theory in which the interest rate is determined by money supply and money demand.
Money supply

The supply of real money balances is fixed:

\[
(M/P)^s = \frac{\bar{M}}{\bar{P}}
\]
Money demand

Demand for real money balances:

\[(M/P)^d = L(r)\]
Equilibrium

The interest rate adjusts to equate the supply and demand for money:

\[
\frac{\bar{M}}{\bar{P}} = L(r)
\]
How the Fed raises the interest rate

To increase r, Fed reduces M

$\frac{M}{P}$

r

interest rate

$L(r)$

real money balances

$\frac{M_2}{P}$

$\frac{M_1}{P}$
CASE STUDY: Monetary Tightening & Interest Rates

- Late 1970s: \(\pi > 10\% \)
- Oct 1979: Fed Chairman Paul Volcker announces that monetary policy would aim to reduce inflation
- Aug 1979–April 1980: Fed reduces \(M/P \) 8.0%
- Jan 1983: \(\pi = 3.7\% \)

How do you think this policy change would affect nominal interest rates?
Monetary Tightening & Interest Rates, cont.

The effects of a monetary tightening on nominal interest rates

<table>
<thead>
<tr>
<th></th>
<th>short run</th>
<th>long run</th>
</tr>
</thead>
<tbody>
<tr>
<td>model</td>
<td>liquidity preference (Keynesian)</td>
<td>Quantity theory, Fisher effect (Classical)</td>
</tr>
<tr>
<td>prices</td>
<td>sticky</td>
<td>flexible</td>
</tr>
<tr>
<td>prediction</td>
<td>$\Delta i > 0$</td>
<td>$\Delta i < 0$</td>
</tr>
<tr>
<td>actual outcome</td>
<td>8/1979: $i = 10.4%$</td>
<td>8/1979: $i = 10.4%$</td>
</tr>
<tr>
<td></td>
<td>4/1980: $i = 15.8%$</td>
<td>1/1983: $i = 8.2%$</td>
</tr>
</tbody>
</table>
The *LM* curve

Now let’s put Y back into the money demand function:

$$\left(\frac{M}{P}\right)^d = L(r,Y)$$

The *LM* curve is a graph of all combinations of r and Y that equate the supply and demand for real money balances.

The equation for the *LM* curve is:

$$\frac{\bar{M}}{\bar{P}} = L(r,Y)$$
Deriving the LM curve

(a) The market for real money balances

(b) The LM curve

The market for real money balances

$L(r, Y_2)$

$L(r, Y_1)$

r_1 to r_2

M/P

M_1/P

r

Y_1 to Y_2

r

r_1 to r_2
Why the LM curve is upward sloping

- An increase in income raises money demand.
- Since the supply of real balances is fixed, there is now excess demand in the money market at the initial interest rate.
- The interest rate must rise to restore equilibrium in the money market.
How ΔM shifts the LM curve

(a) The market for real money balances

(b) The LM curve
Suppose a wave of credit card fraud causes consumers to use cash more frequently in transactions.

Use the liquidity preference model to show how these events shift the LM curve.
ANSWERS
Shifting the LM curve

(a) The market for real money balances

(b) The LM curve
The short-run equilibrium

The short-run equilibrium is the combination of r and Y that simultaneously satisfies the equilibrium conditions in the goods & money markets:

$$Y = C(Y - \bar{T}) + I(r) + \bar{G}$$

$$\frac{\bar{M}}{\bar{P}} = L(r, Y)$$
The Big Picture

Keynesian cross

Theory of liquidity preference

IS curve

LM curve

IS-LM model

Agg. demand curve

Agg. supply curve

Model of Agg. Demand and Agg. Supply

Explanation of short-run fluctuations
Preview of Chapter 12

In Chapter 12, we will

- use the *IS-LM* model to analyze the impact of policies and shocks.
- learn how the aggregate demand curve comes from *IS-LM*.
- use the *IS-LM* and *AD-AS* models together to analyze the short-run and long-run effects of shocks.
- use our models to learn about the Great Depression.
CHAPTER SUMMARY

1. Keynesian cross
 - basic model of income determination
 - takes fiscal policy & investment as exogenous
 - fiscal policy has a multiplier effect on income

2. IS curve
 - comes from Keynesian cross when planned investment depends negatively on interest rate
 - shows all combinations of \(r \) and \(Y \) that equate planned expenditure with actual expenditure on goods & services
CHAPTER SUMMARY

3. Theory of liquidity preference
 - basic model of interest rate determination
 - takes money supply & price level as exogenous
 - an increase in the money supply lowers the interest rate

4. LM curve
 - comes from liquidity preference theory when money demand depends positively on income
 - shows all combinations of r and Y that equate demand for real money balances with supply
5. IS-LM model

- Intersection of IS and LM curves shows the unique point \((Y, r)\) that satisfies equilibrium in both the goods and money markets.