Figure 3.1 GDP and Capital per Worker, 2009

Source: Calculations based on Heston et al. (2010).
Production Function

\[Y = F(K, L) \]

Constant Returns to Scale:
\[F(zK, zL) = zF(K, L) \]

\[\frac{1}{L}Y = \frac{1}{L}F(K, L) = F\left(\frac{K}{L}, 1\right) \]

\[y = \frac{Y}{L} = F(k, 1) = f(k) \]

\[MPK = f(k + 1) - f(k) \]

\[MPK = \frac{df(k)}{dk} \]
Figure 3.2 A Production Function with Diminishing Marginal Product of Capital
Cobb-Douglas Production Function

\[Y = F(K, L) = AK^\alpha L^{1-\alpha} \]

\[\frac{1}{L} Y = \frac{1}{L} F(K, L) = F\left(\frac{K}{L}, 1\right) = A\left(\frac{K}{L}\right)^\alpha (1)^{1-\alpha} \]

\[y = Ak^\alpha \]
Capital’s Share in Income

Capital's Share in Income = \(\frac{MPK \ast K}{Y} \)

For Cobb-Douglas, \(\alpha \) is this share:

\(MPK = \alpha AK^{\alpha-1} L^{1-\alpha} \)

So, Capital's Share = \(\frac{MPK \ast K}{Y} = \frac{\alpha AK^{\alpha-1} L^{1-\alpha} K}{Y} \)

= \(\frac{\alpha AK^{\alpha} L^{1-\alpha}}{Y} = \frac{\alpha Y}{Y} = \alpha \)
Figure 3.3 Capital’s Share of Income in a Cross-Section of Countries

Source: Bernanke and Gürkaynak (2002), table 10 and note 18.
Table 3.1 Agricultural Land as a Fraction of Total Wealth in the United Kingdom

<table>
<thead>
<tr>
<th>Year</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1688</td>
<td>64%</td>
</tr>
<tr>
<td>1798</td>
<td>55%</td>
</tr>
<tr>
<td>1885</td>
<td>18%</td>
</tr>
<tr>
<td>1927</td>
<td>4%</td>
</tr>
<tr>
<td>1958</td>
<td>3%</td>
</tr>
</tbody>
</table>
The Solow Growth Model

\[\Delta K = I - D \]
\[\Delta k = i - d \]
\[i = \gamma y \text{ (investment)} \]
\[d = \delta k \text{ (depreciation)} \]

Evolution of k over time:
\[\Delta k = \gamma y - \delta k \]
\[\Delta k = \gamma f(k) - \delta k \]
Digression on Measuring Change Over Time

Discrete time: \[\Delta x_t = x_{t+1} - x_t \]

Growth Rate: \[\hat{x} = \frac{\Delta x_t}{x_t} = \frac{x_{t+1} - x_t}{x_t} \]

Continuous time: \[\dot{x}_t = \frac{dx}{dt} \]

Growth Rate: \[\hat{x} = \frac{\dot{x}}{x_t} \]
Figure 3.4 The Steady State of the Solow Model
Figure 3.5 Determination of Steady-State Weight
Figure 3.6 Effect of Increasing the Investment Rate on the Steady State

Note: $\gamma_2 > \gamma_1$
Steady State Solution for Cobb Douglas Production Function

\[\Delta k = \gamma A k^\alpha - \delta k \]
\[\Delta k = 0 \text{ implies} \]
\[\gamma A \left(k^{ss} \right)^\alpha = \delta k^{ss} \]

\[k^{ss} = \left(\frac{\gamma A}{\delta} \right)^{1/1-\alpha} \]

Plug in to production function to obtain:

\[y^{ss} = A \left(k^{ss} \right)^\alpha = A^{1/1-\alpha} \left(\frac{\gamma}{\delta} \right)^{\alpha/1-\alpha} \]
Steady State Solution for Cobb Douglas Production Function

\[y^{ss} = A^{1/1-\alpha} \left(\frac{\gamma}{\delta} \right)^{\alpha/1-\alpha} \]

As the investment share (\(\gamma \)) rises, steady-state output per worker (\(y^{ss} \)) increases; As the depreciation rate (\(\delta \)) rises, steady-state output per worker falls.

Can we use this to explain income differences across countries?
Explaining Income Differences

Assume steady state:

\[y_{is}^{ss} = A^{1/1-\alpha} \left(\frac{\gamma_i}{\delta} \right)^{\alpha/1-\alpha} ; \quad y_{js}^{ss} = A^{1/1-\alpha} \left(\frac{\gamma_j}{\delta} \right)^{\alpha/1-\alpha} \]

\[\frac{y_{is}^{ss}}{y_{js}^{ss}} = \frac{A^{1/1-\alpha} \left(\frac{\gamma_i}{\delta} \right)^{\alpha/1-\alpha}}{A^{1/1-\alpha} \left(\frac{\gamma_j}{\delta} \right)^{\alpha/1-\alpha}} = \left(\frac{\gamma_i}{\gamma_j} \right)^{\alpha/1-\alpha} \]

If \(\alpha = 1/3 \), \(\gamma_i = 0.20 \), and \(\gamma_j = 0.05 \) we obtain:

\[\frac{y_{is}^{ss}}{y_{js}^{ss}} = \left(\frac{0.2}{0.05} \right)^{1/2} = 4^{1/2} = 2 \]
Figure 3.7 Predicted versus Actual GDP per Worker

Source: Author’s calculations using data from Heston, Summers, and Aten (2011).
Speed of Convergence to the Steady State

\[\Delta k = \gamma A k^\alpha - \delta k \]

\[\hat{k} = \frac{\Delta k}{k} = \gamma A k^{\alpha - 1} - \delta \]

Shows speed with which the economy approaches the steady state.
Figure 3.10 Speed of Convergence to the Steady State

\[\gamma A k^{\alpha - 1} \]

\[k^* \]

\[\delta \]

Capital per worker (k)
Figure 3.8 Saving Rate by Decile of Income per Capita

Average saving rate, 2009

Decile of GDP per capita, 2009
Figure 3.9 Solow Model with Saving Dependent on Income Level