Accepted Manuscript, August 2015

Journal of Experimental Psychology: Human Perception and Performance

Rational Number Comparison Across Notation: Fractions, Decimals, and Whole numbers

Michelle Hurst & Sara Cordes
Boston College Department of Psychology

Author Note

We would like to thank the Boston College Infant and Child Cognition Center for their invaluable feedback on an earlier version of the manuscript.

Word count: 9063 (Main text only)

Corresponding Author’s Address:

Michelle Hurst
Boston College Department of Psychology
140 Commonwealth Ave.
300 McGuinn Hall
Chestnut Hill, MA 02467
hurstm@bc.edu
Abstract

Although fractions, decimals, and whole numbers can be used to represent the same rational number values, it is unclear whether adults conceive of these rational number magnitudes as lying along the same ordered mental continuum. In the current study, we investigated whether adults’ processing of rational number magnitudes in fraction, decimal, and whole number notation show systematic ratio-dependent responding characteristic of an integrated mental continuum. Both reaction time and eye-tracking data from a number magnitude comparison task reveal ratio-dependent performance when adults compare the relative magnitudes of rational numbers both within the same notation (e.g., fractions vs. fractions) and across different notations (e.g., fractions vs. decimals), pointing to an integrated mental continuum for rational numbers across notation types. In addition, eye-tracking analyses provide evidence of an implicit whole number bias when comparing values in fraction notation, and individual differences in this whole number bias were related to the individual’s performance on a fraction arithmetic task. Implications of our results for both cognitive development research and math education are discussed.

Keywords: Rational Numbers; Decimals; Fractions; Number Representation; Number Comparison
Introduction

Whether comparing prices, mortgage rates, or health care options, and/or when pursuing STEM (Science, Technology, Engineering, and Mathematics) related fields (Sadler & Tai, 2007), an understanding of the magnitudes associated with numbers presented in fraction and decimal notation is essential. However, the task of mastering rational number concepts is notoriously difficult. A number of studies reveal robust and systematic errors when processing rational numbers, reflecting both poor procedural and conceptual competence even after years of schooling (e.g., National Mathematics Advisory Panel, 2008; Ni & Zhou, 2005; Vamvakoussi & Vosniadou, 2010). Moreover, rational number concepts are particularly difficult for people diagnosed with Mathematics Learning Disability (Dyscalculia; affecting approximately 6-11% of the population; Shalev, 2007), with both the nature and developmental trajectory of difficulties in learning about these concepts differing substantially from typically developing peers (Mazzocco, Myers, Lewis, Hanich, & Murphy, 2013). Thus, explorations into how rational number magnitudes are processed and how particular strategies or biases may be related to arithmetic proficiency are of particular importance for identifying ways to target better rational number learning in the classroom.

While decades of research has investigated the characteristics of whole number magnitude processing, only recently have similar investigations been taken with rational numbers in other notations, like fractions and decimals. Although fractions and decimals are part of the same rational number system as whole numbers, the difficulties and systematic errors shown by children and adults suggest that processing of rational numbers in these notations may show clear distinctions from whole numbers. One potentially important distinction between fractions, decimals, and whole numbers may be the way individuals
represent the magnitudes associated with the rational number notation. In particular, a substantial literature with whole numbers suggests that adults and children represent whole number magnitudes as approximate magnitudes in an ordered system. Similarly, a recent surge of research looking at fractions (e.g., Faulkenberry & Pierce, 2011; Kallai & Tzlegov, 2012; Schneider & Siegler, 2010; Sprute & Temple, 2011) and decimals (e.g., DeWolf, Grounds, Bassok, & Holyoak, 2014; Kallai & Tzelgov, 2014; Varma & Karl, 2013) has provided similar evidence of an ordered and approximate analogue system. However, whether the magnitudes represented using fraction, decimal, and whole number notation are represented using two or three distinct mental representations or alternatively using an integrated representation is an open question.

In whole number magnitude comparisons, one robust characteristic is known as the ratio effect (or similarly, distance effect). In particular, when asked to quickly judge which of two numbers (Arabic numerals) is largest, response times and accuracy vary as a function of the numerical distance between the two numbers (e.g., discriminating 5 from 6 is harder than 5 from 10) and the numerical size of the numbers (e.g., discriminating 7 from 8 is easier than 19 from 20, despite similar distances; Moyer & Landauer, 1967, 1973). Together, these distance and numerical size effects describe ratio effects, such that comparisons are ratio-dependent, becoming faster and easier when the ratio between the two numbers is larger (Moyer & Landauer, 1967, 1973), consistent with Weber’s Law. These ratio effects are robust; not only are they found in reaction time data, but they have also been observed in eye-gaze fixation patterns during whole number symbolic comparison tasks. In

1 Although distance effects and ratio effects have been examined somewhat interchangeably in the literature, it should be noted that ratio effects provide a more accurate account of the data as they take into account both distance and numerical size. For example, comparing 10 and 15 (ratio of 2:3) is easier and faster than comparing 20 and 25 (ratio of 4:5), despite a comparable numerical distance between the two pairs of integers.
particular, participants tend to engage in longer fixations when the ratio between the two values approaches one (Merkley & Ansari, 2010), suggesting that these ratio effects are present and observable using multiple implicit measures of numerical processing.

Importantly, the presence of ratio effects has been taken as evidence to suggest that whole numbers are represented as ordered approximate magnitudes within an analog (i.e., continuous) system or continuum (e.g., Dehaene, Bossini, & Giraux, 1993; Gallistel & Gelman, 1992; Meck & Church, 1983; Moyer & Landauer, 1967, 1973), although the specific mathematical model for this representation is still debated (see Balci & Gallistel, 2006; Brannon, Wusthoff, Gallistel, & Gibbon, 2001; Cordes, Gallistel, Gelman, & Latham, 2007; Dehaene, 1992, 2001; Verguts, Stevens, & Fias, 2005 for alternative accounts). Many cognitive models posit that this analog system can be thought of as being spatially organized akin to a mental number line (e.g., Siegler & Opfer, 2003), however it should be noted that the presence of ratio effects alone does not require that numerical magnitudes be spatially organized, as in a mental number line model (Cantlon, Cordes, Libertus, & Brannon, 2009). Moreover, whether ratio effects result from noise in memory for these numerical values (i.e., slight inaccuracies in the reference value stored in memory for numerical values; e.g., Meck & Church, 1983) or in the decision-making process (e.g., Gallistel, King, & McDonald, 2004) is also unclear. Importantly, however, it is generally agreed that ratio effects are indicative of numerical information being represented via an ordered analog magnitude system, analogous to a mental continuum.

Recent research has begun to investigate whether similar ratio-dependent characteristics are seen in rational number magnitude tasks when presented in fraction and decimal notation. These investigations provide mixed evidence, suggesting that the
processing of both fraction and decimal notation is context-dependent (Bonato, Fabbri, Umilta, & Zorzi, 2007; Ganor-Stern, Karasik-Rivkin, & Tzelgov, 2011; Ganor-Stern, 2013; Iuculano & Butterworth, 2011; Meert, Gregoire, & Noel, 2009; Zhang, Fang, Gabriel, & Szucs, 2014). Research investigating fraction notation specifically has attempted to disentangle whether the numerical magnitudes depicted by fraction notation are automatically accessed (similar to whole numbers) and whether the magnitudes are accessed holistically or componentially (i.e., based on the whole number components in the numerator or denominator, and not the entire fraction). As a whole, this research suggests that the numerical magnitudes represented by fractions are not automatically activated (Kallai & Tzlegov, 2012; Obersteiner, Van Dooren, & Van Hoof, 2013; although see Jacob, Vallentin, & Nieder, 2012), but can be holistically accessed in some contexts when the processing of magnitude is deliberate (Gabriel, Szucs, & Content, 2013). For example, fraction magnitudes may be accessed holistically in situations where the range of fractions between 0 and 1 are emphasized, priming participants to focus on the relative magnitude of the unit fractions within this range (Ganor-Stern, Karasik-Rivkin, & Tzelgov, 2011). In addition, holistic processing is more likely to occur when the components of the fractions are difficult to compare (e.g., when the fractions are presented sequentially as opposed to simultaneously; Ganor-Stern, 2013) and when the fractions are designed to make the components less meaningful (e.g., non matching numerators and/or denominators preventing a “larger numerator equals larger fraction” strategy; Meert, Gregoire, & Noel, 2009; Schneider & Siegler, 2010; Zhang, Fang, Gabriel, & Szucs, 2014). Importantly, in these contexts that emphasize holistic processing, responding by both adults (Faulkenberry & Pierce, 2011; Schneider & Siegler, 2010; Sprute & Temple, 2011) and children (Meert,
Gregoire & Noel, 2010; Wang & Sigeler, 2013) shows systematic ratio effects when comparing the magnitudes represented by two fractions.

Though fewer studies have focused on decimal magnitude understanding, some evidence suggests that similar to fractions, decimal magnitudes may not be automatically accessed (Kallai & Tzelgov, 2014). However, when decimal magnitude information is deliberately accessed (e.g., in a magnitude comparison task) decimals also show evidence of ratio dependent responding, suggesting that decimal magnitudes are also represented in an ordered and approximate system (DeWolf et al., 2014; Varma & Karl, 2013; Wang & Siegler, 2013).

Thus, when children and adults compare fractions to fractions or decimals to decimals, responses are generally ratio dependent, with smaller numerical differences between values leading to lower accuracy and longer reaction times for these within-notation judgments. This suggests that despite difficulties with rational number understanding, adults and children are able to think about the magnitudes of fractions and the magnitudes of decimals each as ordered approximate magnitudes along a mental continuum.

Importantly, however, there is yet to be a systematic investigation of rational number magnitude comparisons across different notations, leaving open the question of whether whole number, fraction, and decimal magnitudes are represented as falling along the same mental continuum, or instead are conceived of as three distinct ordered systems. That is, are magnitude comparisons made across notation types (e.g., \(\frac{3}{4} \) vs. 0.5) ratio-dependent? On the one hand, the mental continuum has been posited to be a continuous system (e.g., Gallistel, Gelman, & Cordes, 2006) and a recent theory of number knowledge development highlights
the continuities in broadening whole number knowledge to include other rational numbers (Siegler & Lortie-Forgues, 2014; Siegler, Thompson, & Schneider, 2011). If this is the case, then all real-valued numerical magnitudes, including rational numbers, should be represented in an integrated fashion, independent of symbolic notation (i.e., decimal or fraction), resulting in across-notation ratio effects. In line with this hypothesis, evidence suggests that unit fractions (i.e., 1/n where n ranges from 2 to 9) and basic decimals (i.e., 0.n where n ranges from 1 to 9) are represented along the same mental continuum as positive whole numbers (Ganor-Stern, 2013; Ganor-Stern, 2012). However, magnitude processing of these simple fractions and decimals does not necessarily require holistic processing of magnitudes; observed ratio effects could instead be the result of componential processing of the denominator or other potential heuristics associated with these commonly used fractions. In addition, some evidence suggests that people treat all fractions as being a general value less than one (Kallai & Tzelgov, 2009), suggesting that improper fractions (those greater than 1) may not show the same magnitude-based responding as those that are less than one and/or unit fractions in particular. Thus, this leaves open the question of whether fractions in general are treated similarly or if those below one are given an advantage by aligning with our intuitions about fraction magnitudes.

Similarly, despite the fact that these notations come from the same number system and, in some cases represent identical magnitudes (e.g., 0.5 and ½), the robust and systematic errors children and adults make when processing rational numbers may be indicative of a failure to conceive of these values as falling within the same rational number system, but instead as representing two or three distinct numerical systems (Christou & Vosniadou, 2012; Vamvakoussi & Vosniadou, 2010). For example, when asked what kinds
of numbers are between two fractions, many high school students will deny that either
decimals or whole numbers can be between them, but instead insist that only fractions can
be between two fractions (Vamvakoussi & Vosniadou, 2010), indicating students do not
conceive of an integrated rational number system. Moreover, findings that the ratio effects
measured when comparing two fractions are higher (i.e., more greatly impacted by the ratio)
than that of comparisons between two decimals (DeWolf et al., 2014), provides further
evidence to support that fractions and decimals may refer to distinct mental representations.

Along these same lines, work investigating magnitude representations of different
kinds of numerical information have revealed marked differences in the presence or
magnitude of ratio effects, providing support for the claim that children and adults may
conceive of numbers as falling along multiple distinct continuums. For example, when
comparing fractions to integers (positive and negative whole numbers), ratio effects were
found when positive whole numbers were compared to fractions but not between positive
and negative numbers (Ganor-Stern, 2012), suggesting that negative numbers may not be
represented on the same mental continuum as whole numbers. Similarly, evidence suggests
that relative frequencies (e.g., 540 in 1000) do have analog representations akin to a mental
continuum, but these representations depend on the scale being used (as evidenced by higher
ratio effects when comparing across scales compared to within a scale; Warren & Cohen,
2013). In addition, Kallai & Tzelgov (2009) provide evidence to suggest that adults may
consider fractions in general as only representing values less than one, regardless of their
actual magnitude (i.e., both proper (less than one) and improper (greater than one) fractions
are treated as though they are smaller than one). If this is the case, then adults should not
show magnitude based responding when comparing a fraction to a whole number, but
instead should show responding consistent with these more general heuristics. For example, when using the “fractions are small” heuristic, comparing a fraction to a whole number should be easier when the fraction represents a smaller value than the whole number (consistent with the bias) and more difficult when the fraction represents a larger value.

Together, these previous findings suggest that children and adults may not represent whole numbers, fractions, and decimals as an integrated system, but rather may see them as distinct numerical systems. If so, then judgments across notation-types (e.g., \(\frac{3}{4} \) versus 0.5) may not result in systematic responding characteristic of an ordered approximate number representation, even though magnitude judgments within notation (e.g., \(\frac{3}{4} \) versus \(\frac{1}{2} \)) may reveal systematic ratio effects. Moreover, by using a variety of fraction values, both smaller than and larger than whole numbers, in these across-notation comparisons we can further investigate whether people process fractions, decimals, and whole numbers as general magnitudes along an integrated continuum or alternatively, if heuristics like “fractions are smaller than whole numbers” are primarily used instead.

In addition to ratio effect performance characteristics, notational preferences and relative affordances of fractions and decimals is an open question that has only recently begun to be addressed. Few studies have attempted to characterize how rational number processing may differ as a function of notation or whether the use of two distinct notation systems may serve as an impediment to learning rational number concepts. Recent evidence suggests that decimal notation may provide better access to magnitude information compared to fraction notation (DeWolf et al., 2014; DeWolf, Bassock, & Holyoak, 2015; Wang & Siegler, 2013; Zhang, Wang, Lin, Ding, & Zhou, 2013). These findings are in line with arguments that decimal notation is a more transparent notation system for children to
learn (Johnson, 1956) and that curriculums emphasizing decimals and percentages, prior to fractions, may lead to a better understanding of rational number concepts (Moss & Case, 1999). However, in U.S. curriculums fractions are generally introduced prior to decimals, resulting in greater exposure to this notation over the course of schooling, suggesting that there may be some contexts in which fraction notation is preferred, as opposed to decimal notation. For example, recent evidence suggests that relational (i.e., part-whole) information is more readily accessed using fraction notation, relative to decimal notation (DeWolf, Bassock, & Holyoak, 2015). In the current study, we further clarify the relative difficulty of fraction and decimal notation in tasks requiring magnitude processing and basic procedural arithmetic involving rational numbers.

In addition to investigating performance differences between the two notations, it is unclear how individuals incorporate the use of both notations simultaneously (i.e. compare 0.5 vs. ¾). One possibility is that symbolic processing of rational number magnitude should be easier when values are presented via a common notation system (i.e., decimals to decimals or fractions to fractions), regardless of the notation type, much like it is easier to compare apples to apples than apples to oranges. If so, then comparisons of rational numbers presented in distinct notations (decimal vs. fraction) should be relatively more difficult than those presented in a common notation (fraction vs. fraction or decimal vs. decimal). Alternatively, it may be that numerical magnitudes are less accessible via one of these notations compared to the other (e.g. understanding fractions may be more difficult than decimals). In this case, magnitude comparisons across notation systems (decimal vs. fraction) should still be relatively more difficult (slower, less precise) than those involving two values presented in the preferred notation system (e.g., decimal vs. decimal), but
importantly, they should be relatively *easier* than comparisons involving two values in the less preferred notation (e.g., fraction vs. fraction); that is, relative difficulty should scale with the number of values presented in the less-preferred notation. The current investigation sheds light on these alternative predictions by examining the relative difficulty of across-notation and within-notation magnitude comparisons.

In addition to behavioral data, the current study explores eye-gaze patterns during rational number processing to characterize implicit levels of processing. Eye-tracking methods used during whole number magnitude comparison tasks have provided evidence of systematic ratio effects in eye fixation patterns (Merkely & Ansari, 2010). However, whether a similar ratio dependency would be found for fractions and decimals is unclear. Given the increased perceptual complexity of fraction and decimal notation (i.e., multiple components, including non-numerical components (i.e., decimal point or vinculum)), it is unclear whether eye fixation patterns will similarly be sensitive to the ratio between the values.

Furthermore, although ratio effects in both within and across notation comparisons would suggest that adults represent these values (regardless of notation) via a single integrated magnitude continuum, componential biases (i.e., whole number biases) may still be evident at an implicit level. Previous studies have used eye-tracking methods to study componential processing of both fraction (Huber, Moeller, & Nuerk, 2014) and decimal (Huber, Klein, Willmes, Nuerk, & Moeller, 2014) notation. These studies have revealed novel insights into the processing of rational numbers, for example suggesting similarities in the processing of decimals and natural numbers (Huber, Klein, Willmes, Nuerk, & Moeller, 2014) and showing that whether and how componential processing is used for fraction
notation changes depending on the context (Huber, Moeller, & Nuerk, 2014). However, whether these implicit biases interfere with rational number processing, resulting in poorer performance on other math assessments is an open question. Thus in the current study, we explored whether relative eye-fixation patterns to the two fraction components (i.e., numerator and denominator) may provide insight into individual numerical processing strategies (e.g., implicit whole number biases unavailable via standard behavioral response time and accuracy measures) by investigating whether these implicit strategies are predictive of performance on a procedural fraction arithmetic task.

In sum, this study specifically addressed three main research goals: (1) to determine whether fractions, decimals, and whole numbers are represented as using a single integrated mental continuum; in other words, if across-notation comparisons show systematic responding characteristic of an ordered approximate magnitude representation (i.e., ratio effects); (2) to assess the relative difficulty of rational number processing in fraction notation versus decimal notation in both magnitude (e.g. \(\frac{1}{2} \) vs. \(\frac{3}{4} \) compared to 0.5 vs. 0.75) and arithmetic contexts (\(\frac{1}{2} + \frac{3}{4} \) compared to 0.5 + 0.75), as well as to explore how magnitude processing across notations (e.g. \(\frac{1}{2} \) vs. 0.75) may clarify the picture; and (3) to investigate how individual implicit strategies when processing fractions, as measured via eye-tracking techniques, may predict competence in fraction arithmetic.

Methods

Participants
Sixty-two Boston College students (M=19.4 years, Range: 17 to 24 years, 15 male) participated for course credit or $10. Fifty participants had accurately calibrated eye-tracking data in addition to the behavioral data.²

Stimuli and Apparatus

Number Comparison Task

On every trial of the number comparison task, subjects were presented two rational numbers (decimal, fraction, and/or whole-number) side-by-side and were asked to judge which of the numbers was larger. There were six distinct notation comparison types, each presented within its own block: Fraction vs. Fraction (FvF; e.g., 1/2 vs. 3/4), Decimal vs. Decimal (DvD; e.g., 0.50 vs. 0.75), Whole Number vs. Whole Number (NvN; e.g., 5 vs. 2), Whole Number vs. Decimal (NvD; e.g., 5 vs. 2.10), Whole Number vs. Fraction (NvF; e.g., 4 vs. 9/2), and Decimal vs. Fraction (DvF; e.g., 0.89 vs. 4/5). The order of the blocks was counterbalanced between participants. The ratio between the two numerical values (larger value / smaller value) presented on each trial was chosen from one of four approximate numerical ratio bins: 1.125 (exact ratios tested ranged from 1.11 to 1.17), 1.25 (exact ratios tested ranged from 1.24 to 1.27), 1.5 (exact ratios tested ranged from 1.35 to 1.67), and 2.5 (exact ratios tested ranged from 2.2 to 2.92). Each ratio bin for each comparison type included 4 unique comparisons shown twice (once with the largest on the left and once with the largest on the right). Thus, each block contained a total of 32 trials (4 comparisons x 2 (shown twice) x 4 ratio bins), making the entire task 192 trials (32 trials x 6 blocks).

All stimuli were made using Adobe Illustrator in 72pt regular Arial font (with a height of approximately 2cm) and presented on a 1400.08cm² screen (1024 x 768 px). For ² The other 12 participants were not calibrated within 1° (the set criteria) for reasons such as excessive movement, problems with lighting, and/or problems with height and adjustments.
fraction stimuli, the numerator and denominator values were between 1 and 15 and no number appeared twice in the same comparison (e.g., 2/4 versus 4/5 would not occur), meaning all 4 integers used to make up the two fractions were distinct, in order to prevent the use of overt componential, whole number strategies (as in Schneider & Siegler, 2010). In addition, on FvF trials, the relative magnitude of the fraction was congruent with the relative magnitude of the numerator (i.e., the larger-valued fraction had the larger-valued numerator) on 14 of the 32 trials and incongruent on the other 18 trials, making a numerator-based strategy unreliable. For decimal stimuli, all numbers were presented to the hundredths digit (i.e., two digits after the decimal point), with a whole number (sometimes 0) always before each decimal point (e.g., 0.20; 1.25). Decimal values ranged from 0.20 to 22.50; Fraction values ranged from 1/5 to 15/2; Whole Numbers ranged from 1 to 45. Between each trial a 32pt font (1cm²) fixation point appeared in the center of the screen.

Eye-Tracking Apparatus

Participants’ eye movements were recorded with a SensoMotoric Instruments (SMI; Boston, MA) mobile Eye Tracker. Participants were seated at eye level with the center of a 22” computer monitor at a distance of approximately 24” (although exact distance, seating level, and lighting level was adjusted for each individual participant for optimal calibration). The SMI system recorded participants’ left eye gaze at 120Hz via a SMI RED mobile tracking system. Recording accuracy was within 1.0° visual angle.

Fraction and Decimal Procedural Assessments

The fraction procedural assessment and decimal procedural assessment each consisted of 8 items involving fraction or decimal arithmetic (two items each of addition, subtraction, multiplication, and division) presented in two separate blocks (order
counterbalanced across participants; see the Appendix for the full set of questions). None of
the fraction arithmetic problems contained two fractions with a common denominator. On
the decimal assessment, half the problems contained two decimals to the hundredths digit
(e.g., 1.27 + 0.89) and half the problems contained one decimal to the hundredths digit and
the other to either the tenths or thousandths digit (e.g., 0.5 + 0.13; 1.74 – 1.321). Answers to
all problems resulted in positive values. The questions within each block were presented in a
random order. All questions were presented on a Macintosh laptop, which was different
from the eye-tracking computer used for the comparison task.

Procedure

Participants were seated in a quiet room. The experimenter entered the room to
explain the instructions at the beginning of each task. During the tasks, the experimenter sat
just outside the room out of the participants’ view and could monitor the eye-tracker during
the task.

All participants first completed the Number Comparison task followed by the two
arithmetic assessments (Fraction and Decimal, order counterbalanced). Participants also
completed an Algebra assessment prior to the comparison task, however data from the
algebra assessment are reported elsewhere (Hurst & Cordes, under review) and will not be
discussed further. For all tasks, participants were encouraged to perform as quickly and
accurately as possible.

The Number Comparison task was performed on the eye-tracker. The eye tracking
session began with a 4-point calibration procedure. Participants were instructed to follow a
fixation circle that moved to 4 quadrants on the computer screen. Participants were
instructed to hold their fixation onto the circle until it moved to the next quadrant. After the
calibration, participants were provided with additional instructions for the Number Comparison Task and then told to begin whenever they were ready. The experimenter monitored the eye-tracking status throughout the experiment, and if needed, the set-up was adjusted between comparison blocks.

Each of the six numerical comparison types (i.e., DvD, NvN, FvF, NvF, NvD, DvF) were presented in a block of 32 trials. The blocks were presented in six different fixed orders between participants, with participants randomly assigned to a particular order (keeping the distribution across orders even). Participants selected which of the two numbers was larger by selecting one of the two neighboring keys on the keyboard with their right hand (left stimulus: “[“, right stimulus: “]”). After selecting his/her answer with their right hand, the participant advanced to the next trial by pushing the F4 key on the keyboard with their left hand. Participants were instructed to keep both hands on the keyboard throughout the session. Numbers remained on the screen until the participant advanced to the next trial. A fixation-cross appeared between each trial in the middle of the screen to direct attention back to the middle before new numbers became visible. Before the task began, participants performed two non-numerical practice trials in which they indicated the side corresponding to the location of a circle on the screen to ensure they understood which buttons to select. In addition, each block of trials began with two comparison type specific practice trials, on which the participant received feedback from the computer (e.g., they received two FvF practice trials prior to the FvF block).

For both the Fraction and Decimal Procedural Assessments, participants were seated in front of a Macintosh laptop computer and given a pencil and paper. Questions were presented one at a time on the computer screen (allowing for the timing of individual
questions) but participants were asked to solve all problems using the pencil and paper. After solving each problem, the participant pressed a button on the computer to advance to the next question. Participants were told that their responses would be timed but that there was no time limit for responding.

Data Analyses

Number Comparison Task Measures: Accuracy analyses include data from all trials on the number comparison task. For reaction time (RT) analyses only RTs shorter than 4000 ms, within 3 standard deviations of that individual’s mean RT for that comparison type x ratio combination, and from trials in which the participant gave the correct response were included. Following these exclusion criteria, in order for data from a comparison type x ratio combination to be included, the participant had to have scored above chance (5 out of 8 correct) on that subset of trials and have a minimum of 2 included data points (correct, within 3 SDs of individual mean, and under 4000 ms).

Reaction time ratio effects were calculated for each comparison type as the slope of line of best fit across numerical ratio (i.e., x-values: 1.125, 1.25, 1.5, 2.5; y-values: average reaction times) for each individual. Similarly, average reaction times for each comparison type were calculated as the average of the average reaction times for each ratio (in order to ensure equal treatment of reaction times across the four ratios). To be included in these slope and average data analyses for a particular comparison type, participants must have had useable data (as per the above criteria) from at least 3 of the 4 ratios (i.e., at most one missing data point per type). Ten participants had missing data from only one comparison type (FvF n=6; DvF n=3; NvF n=1) and these data points were replaced with the group mean of that comparison type. Data from two participants were excluded from the analyses.
for having missing data from at least two comparison types, resulting in a total of 60 participants being included in all number comparison analyses.

Eye-tracking: BeGaze software was used to analyze eye-tracking data during the Number Comparison task. Eye tracking data were analyzed using preset rectangular Areas of Interest (AOIs) fit around the numerical symbol. All types were analyzed using two AOIs: Larger Number (i.e., correct response) and Smaller Number (i.e., incorrect response). AOI size depended on the type of number: Fractions (31248px²; 55.6cm²), Decimals (28854 to 29484 px²; 51.3 to 52.4cm²), and Whole Numbers (14364 to 16330px²; 25.6 to 29.1cm²). Within each type of trial, the AOI size for each number type remained the same but the AOI size differed slightly between trial types. Additional AOI analyses examining eye-gaze patterns to the numerator and denominator on FvF trials were also performed (each AOI 13566px²; 24.2cm²).

Fixations were defined as a participant’s gaze resting within 1° of a predetermined AOI for at least 80 ms. Fixation duration was calculated as the total length of fixations within the specified area and only trials that included at least one fixation within the specified area were included in the fixation duration analyses. Reported here are results of analyses involving the total fixation durations, an indicator of cognitive processing, with more difficult processing resulting in longer fixations (see Rayner, 1998 for review), however analyses of fixation counts (number of fixations made) and saccades yielded very similar patterns. Data inclusion was identical to the RT data. Of the individuals who had accurately calibrated eye-tracking data, eight individuals had data replaced by the mean for only one comparison type and one participant was excluded for having missing data in more
than one comparison type. This resulted in the data from 49 participants being included in all eye-tracking analyses.

Procedural Assessments: For the Fraction and Decimal Procedural Assessments, accuracy was near ceiling levels ($M_{	ext{Fraction}}=7.08$ out of 8, $M_{	ext{Decimal}}=6.08$ out of 8) with little variability. Thus, completion times were used as our dependent variable as a measure of performance, with longer completion times being indicative of poorer performance.

Corrections: In all analyses, when a correction for sphericity was required, the Huynh-Feldt correction was used. In order to address the issue of multiple comparisons and control the family wise error rate, we used the Holm’s sequential method within each family of tests (Holm, 1979; Howell, 2013). This method involves performing each individual test to calculate the uncorrected p-value, and then comparing this p-value to a specified adjusted comparison level. To calculate the adjusted comparison level we arranged the uncorrected p-values sequentially from smallest to largest (with the index k labeled from 1 to N, the number of tests) and comparing each uncorrected p-value to alpha/(the test index (k) – the number of tests (N) + 1). Since this a sequential procedure, as soon as a null result is not rejected all the following tests in the family are also deemed non-significant. We used the alpha level of 0.05. In each of the tests we report the Holm’s adjusted comparison level for each test, until non-significance is reached for that particular family.

Results

Number Comparison Task: Potential Response Biases

In order to explore the possibility of response biases in across-notation comparisons (such as expecting the fraction to always be smaller than the whole number), preliminary analyses investigated whether responding in the across-notation comparisons differed as a
function of which notation was the larger (i.e., correct) value. We found no significant differences in reaction time to select the larger value (i.e., a correct response) in DvF comparisons when the fraction was larger versus when the decimal was larger, NvD comparisons when the decimal or whole number was larger, and in NvF comparisons when the whole number was larger versus when the fraction was (in contrast to Kallai & Tzelgov, 2009; all p’s>0.2).

Number Comparison Task: Ratio Effects

To assess the plausibility of an integrated mental continuum model of rational number representation, we investigated whether ratio effects were present in our number comparison task data. At first inspection of the data, it was observed that average RTs were generally monotonically decreasing as numerical ratios increased (1.125, 1.25, 1.5, and 2.5), consistent with the existence of ratio effects. The only exception to this rule was data from the NvF and DvF comparisons which had inexplicably shorter RTs for the hardest ratio bin (1.125) relative to the next hardest ratio bin (1.25; NvF: \(M_{1.125}=2075\text{ms}; M_{1.25}=2176\text{ms}, M_{1.5}=2122\text{ms}, M_{2.5}=2039\text{ms}\); DvF: \(M_{1.125}=2150\text{ms}; M_{1.25}=2221\text{ms}, M_{1.5}=2234\text{ms}, M_{2.5}=2036\text{ms}\)).

Critically, however, we were interested in looking at the pattern of performance for each individual for each comparison type. Thus, ratio effect measures were calculated for each comparison type on average reaction times as the slope of the line of best fit across numerical ratio (i.e., x-values: 1.125, 1.25, 1.5, 2.5; y-values: average reaction times) for each individual such that a slope of 0 indicates no ratio effect and a negative slope indicates the predicted ratio effect (i.e., responses to smaller ratios took longer than responses to larger ratios). Thus, for each comparison type we compared the ratio effect slope measures
to a slope of 0 (using single-sample t-tests). These comparisons revealed significant ratio effects, in the predicted direction, for all six comparison types (controlling for family wise error rate with 6 tests), FvF: \(M = -110.7 \text{ ms}, t(59) = -2.657, p = 0.01 \) (Holm’s level 0.0167), Cohen’s \(d = 0.327 \); DvD: \(M = -42.55 \text{ ms}, t(59) = -3.599, p < 0.001 \) (Holm’s level 0.008), Cohen’s \(d = 0.424 \); NvN: \(M = -81.63 \text{ ms}, t(59) = -14.027, p < 0.001 \) (Holm’s level 0.01), Cohen’s \(d = 0.877 \); DvF: \(M = -78.06 \text{ ms}, t(59) = -2.334, p = 0.023 \) (Holm’s level 0.025), Cohen’s \(d = 0.29 \); NvD: \(M = -48.68 \text{ ms}, t(59) = -4.506, p < 0.001 \) (Holm’s level 0.0125), Cohen’s \(d = 0.51 \); NvF: \(M = -68.67 \text{ ms}, t(59) = -2.081, p = 0.04 \) (Holm’s level 0.05), Cohen’s \(d = 0.26 \); see Figure 1, Panel A. A repeated measures ANOVA on these slopes revealed no main effect of Type, \(F(3.06,180.27) = 0.896, p = 0.45, \eta_p^2 = 0.015 \), suggesting the magnitude of these ratio effects were comparable across comparison types. Importantly, ratio effects were observed in comparisons involving common notations (FvF, DvD, NvN; replicating previous findings), and in those involving distinct notations (DvF, NvF, NvD), providing strong evidence of systematic responding characteristic of an ordered, approximate mental representation regardless of notation type.

Eye-Tracking Measures of Ratio Effects: Similar to the behavioral reaction time data, only fixation durations on correct trials were analyzed and ratio effects of fixation durations were calculated as the slope across ratios (x-values: 1.125, 1.25, 1.5, 2.5; y-values: fixation duration). To assess whether evidence of an integrated mental continuum was also found at the implicit level using eye-tracking measures, we investigated whether there were significant ratio effects found in fixations to the larger (i.e., correct) and to the smaller (i.e., incorrect) numbers in each of the comparison types. Single sample t-tests revealed a significant ratio effect (with a slope of 0 suggesting no ratio effect and a negative slope
suggesting a ratio effect in the predicted direction) in fixation durations to the smaller number, but not to the larger number, across all comparison types except NvD (NvD looking to larger and smaller stimulus, $p>0.5$), and only marginally for NvF, which did not hold up to multiple comparisons for looking to the smaller stimulus ($p=0.026$, Holm’s adjusted level 0.025; see Table 1 for a full set of test statistics and effect sizes and see Figure 2, Panel A). Of note, although ratio effects were only apparent in looking to the smaller number, participants looked significantly longer to the larger (compared to the smaller) number across all trial types ($p's<0.001$; see Figure 2, Panel B).

Comparing Notations: Average Reaction Time and Accuracy

Next, we investigated the relative difficulty of comparing the various comparison types using two Repeated Measures ANOVAs with a single within-subject factor of Comparison Type (6: FvF, DvD, NvN, DvF, NvD, NvF) on average reaction time and on accuracy.

There was a significant main effect of Type on reaction time, $F(2.8, 163.2)=625.4$, $p<0.001$, $\eta_p^2=0.914$, and accuracy, $F(3.069, 187.2)=40.554$, $p<0.001$, $\eta_p^2=0.399$.

Comparisons involving fractions took the longest and had the lowest accuracy, followed by those involving decimals, followed by whole number comparisons, Reaction Time:

- $M_{FvF}=2343\text{ms}$; $M_{DvF}=2156\text{ms}$; $M_{NvF}=2108\text{ms}$; $M_{DvD}=1001\text{ms}$; $M_{NvD}=966\text{ms}$; $M_{NvN}=762\text{ms}$; Accuracy (% correct): $M_{FvF}=84.1\%$; $M_{NvF}=88.1\%$; $M_{DvF}=90\%$; $M_{DvD}=96.3\%$; $M_{NvD}=96.3\%$; $M_{NvN}=98.1\%$; see Figure 1, Panel B.

On of our primary questions was the relative difficulty of comparisons involving two fractions, two decimals, or a fraction and a decimal. Thus, additional planned comparisons on accuracy and average reaction time of FvF, DvD, and DvF comparisons indicated that
comparisons involving two fractions (FvF) were significantly more difficult (slower and less accurate) than comparisons between a decimal and a fraction (DvF), which in turn were significantly more difficult than comparisons involving two decimals (DvD; all $p's<0.001$, for both accuracy and reaction time; medium effect sizes between FvF and DvF: Cohen’s $d=0.54$ (RT) and 0.59 (Accuracy); large effect sizes for DvF vs. DvD: Cohen’s $d's>0.8$ for both; DvD vs. FvF: Cohen’s $d's>3.0$ for both).

Whereas magnitude processing of values presented in decimal notation was significantly faster and more accurate than that of fractions, the converse was found when it came to arithmetic using each of these distinct notations. Analyses revealed that participants were both faster, $t(60)=8.072, p<0.001$; $M_{\text{Fraction}}=248.1$secs, $M_{\text{Decimal}}=420.4$secs, and more accurate, $t(60)=5.15, p<0.001$; $M_{\text{Fraction}}=88.5\%$, $M_{\text{Decimal}}=76\%$, when performing the fraction procedural arithmetic assessment than when performing the decimal procedural arithmetic assessment.

Fraction AOI Analyses

In addition to using traditional reaction time and accuracy measures to compare rational number processing in different notations, we were particularly interested in whether evidence of whole number biases could be found in fraction processing specifically at the implicit level using eye-fixation patterns, despite the fact that our stimuli were created with the intention of limiting whole number strategies. Thus, specific AOI analyses were performed on FvF trials to examine the pattern of fixations to specific parts of the fraction (fixations to the numerators and denominators of the larger and smaller fractions).

First, a Stimulus (2: larger vs. smaller fraction) X AOI (2: numerator vs. denominator) Repeated Measures ANOVA was performed on overall fixation durations.
Results revealed fixation duration varied across Stimulus and AOI, such that (consistent with previous analyses) participants fixated longer to the larger fraction relative to the smaller fraction, $M_{\text{larger}} = 755.67\text{ms}; M_{\text{smaller}} = 704.76\text{ms}; F(1, 39) = 10.425, p<0.003, \eta_p^2=0.211$. Additionally, consistent with predictions of whole-number biases, participants fixated longer to the numerator relative to the denominator, $M_{\text{denominator}} = 669.7\text{ms}; M_{\text{numerator}} = 790.7\text{ms}; F(1, 39) = 4.418, p<0.05, \eta_p^2=0.096$. There was also a marginal interaction between variables; the difference in looking to the numerator and denominator of the larger fraction, $M_{\text{denominator}} = 712.6\text{ms}, M_{\text{numerator}} = 798.8\text{ms}$ was less dramatic (i.e., smaller) than the difference in looking to these two components for the smaller fraction, $M_{\text{denominator}} = 626.9\text{ms}, M_{\text{numerator}} = 782.6\text{ms}; F(1,39)=4.009, p=0.052, \eta_p^2=0.093$.

To explore whether specific patterns of looking to fractions were indicative of better fraction processing, we computed an individual measure of implicit Numerator Bias (potentially indicative of whole number bias) by subtracting fixation durations to the denominator (DEN; averaged across the smaller and larger fractions) from fixation durations to the numerator (NUM; averaged across the smaller and larger fractions). We then measured the correlation between performance in the Fraction Procedural assessment and the Numerator Bias score. Consistent with predictions that greater relative looking to the numerator was indicative of a whole number bias, and thus less efficient fraction processing, this difference score was positively correlated with Fraction Procedural completion time, $r(40)=0.386, p=0.014$ (see Figure 3). Thus, looking longer to the numerator relative to the denominator (indicative of stronger implicit whole-number biases) was associated with poorer performance on the fraction procedural assessment.
In order to confirm that this relationship is specific to fraction processing and not arithmetic understanding or rational number understanding more generally, we used a regression analysis to control for performance on the decimal arithmetic assessment. Overall, the model is significant, $R^2 = 0.173$, $F(2,37)=3.88$, $p=0.029$. Importantly, however, even when controlling for decimal arithmetic completion time, $\beta=0.163$, $p=0.3$, looking to the numerator relative to the denominator on the magnitude task was a significant and unique predictor of fraction arithmetic, $\beta=0.342$, $p=0.03$.

Discussion

This study thoroughly investigated rational number magnitude understanding across notations using both a magnitude based task and a procedural arithmetic task. In addition, the current study used more general fraction and decimal values beyond common unit fractions and included comparisons within a single notation as well as across two notations, allowing for a more complete picture of adults’ processing of rational number. Furthermore, using implicit eye gaze patterns we were able to identify implicit whole number biases present in fraction magnitude tasks (even when using carefully controlled stimuli to discourage componential processing) and use the individual bias measure to predict performance on a fraction arithmetic task.

Our primary research question addressed whether the systematic response pattern indicative of an ordered, approximate magnitude representation would be seen across fraction, decimal, and whole number notations. In other words, are these values represented in a notation-independent fashion along an integrated mental continuum? In line with previous studies, we found significant reaction time ratio effects for comparisons involving exclusively whole numbers (NvN; e.g., Merkley & Ansari, 2010; Moyer & Landauer, 1967,
1973), exclusively fractions (FvF; Faulkenberry & Pierce, 2011; Meert, Gregoire & Noel, 2010; Schneider & Siegler, 2010), and exclusively decimal values (DvD; DeWolf et al., 2014; Varma & Karl, 2013). Most significantly, however, our data are the first to simultaneously reveal ratio effects in data from comparisons involving distinct notations across all three notations for values both above and below one (decimals vs. fractions; decimals vs. whole numbers; whole numbers vs. fractions). So, despite the prevalence of whole-number biases (Ni & Zhou, 2005) and difficulties in understanding the relationship between values presented in distinct notations (Vamvakoussi & Vosniadou, 2010), when judging numerical magnitudes, results indicate that adults represent rational numbers in a notation-independent fashion, considering fraction, decimal, and whole number magnitudes as falling within the same mental continuum. Providing further support for this claim, we found no evidence of particular biases or heuristics in the across-notation comparisons (e.g., adults were no faster at responding when the whole number was larger than the fraction than when the fraction was larger than the whole number), suggesting that participants processed the magnitude of each value without notation-dependent heuristics (i.e., such as “fractions are always less than one”; Kallai & Tzelgov, 2009). That is, not only do we find evidence of ratio-dependent responding, but also by investigating performance across different notations we show no evidence of biases or heuristics about the general size of particular types of numbers. Thus, in the context of fraction, decimal, and whole number notations that span a range of numerical values, adults appear to process the magnitude associated with the numerical symbol for all rational number notations.

Further support for an integrated continuum was found in the eye-gaze data, in which ratio effects in average fixation durations were found in looking to the incorrect stimulus
across all comparison types (except, inexplicably, for NvD and only marginally for NvF). Thus, even when making magnitude judgments across notation types, as the ratio between the two stimuli decreased, the average length of fixation to the smaller number increased. In contrast, average fixation durations to the larger number were longer (compared to the smaller number) and not dependent upon ratio (for all the comparison types). As such, the longer fixations to the larger number, regardless of ratio, was most likely a function of response selection – that is, participants simply looked longer to the value that they were selecting (since only correct trials were included). On the other hand, while looking to the larger number was generally longer and driven by response selection, fixations to the smaller number appeared to be dependent upon trial difficulty (and thus ratio dependent). These results suggest that fixations to the smaller (i.e., incorrect) number may be a more sensitive measure of the decision-making processes involved in numerical comparison judgments.

Thus, using both behavioral response and eye-tracking methods, the current data extend previous literature looking at rational number comparisons by providing strong evidence for an integrated mental continuum of rational numbers independent of notation in educated adults. While the specific interpretation of ratio effects may differ slightly between theoretical models, one key finding (independent of the interpretation of ratio effects) is the similarity in performance patterns across both within notation (e.g., between two fractions) and across-notation (e.g., between one decimal and one fraction) comparisons, suggesting that magnitude processing may function in a similar manner, regardless of notation. Although previous studies have provided some evidence to support this, these previous studies have used common fractions, most of which are less than one. Thus, given that some
evidence suggests that all fractions are treated as being less than one (Kallai & Tzelgov, 2009), it is feasible that the magnitude-based responding shown for common fractions that are less than one would not be seen for other more general fractions. However, our study used more uncommon fractions with a range of numerical values, providing more general evidence of magnitude based responding for fraction, decimal, and whole number notations. These findings align with recent evidence comparing symbolic and non-symbolic fractions, suggesting that responding in this context is also based on the magnitude of the values presented and not on other heuristics (Mathews & Chesney, 2015). Thus, although these data do not speak to the developmental trajectory of these number systems, they provide support for an integrated theory of number knowledge development (e.g., Siegler & Lortie-Forgues, 2014; Siegler, Thompson, & Schneider, 2011) by suggesting that at least by adulthood, adults have a unified understanding of rational numbers presented in fraction, decimal, and whole number notation.

In light of these findings, educational programs may be able to take advantage of the integrated continuum model by using an integrated number line as an external visual reference in the classroom. This has been done successfully with whole number learning, where a group of at-risk preschoolers showed more whole number learning when playing linear board games relative to circular board games (Ramani & Siegler, 2008; Siegler & Ramani, 2009). A similar approach can be taken with introducing rational numbers in fraction and decimal notation as values along a single number line. Moreover, given that fractions are frequently described as a part-whole relationship (i.e., pie charts), future research should investigate the relative usefulness of linear (e.g. number line) and non-linear (e.g. pie charts) visual representations in teaching rational numbers, and determine whether
either of these representations may promote (or hinder) an integrated understanding of rational numbers.

In addition, we were interested in the relative difficulty of processing rational numbers in fraction versus decimal notation, as well as whether comparing across notation types may pose additional challenges. In line with other data suggesting that decimal magnitude comparisons are easier than fraction magnitude comparisons (e.g., DeWolf et al., 2014), results revealed notably lower performance on magnitude problems involving fractions compared to decimals. Specifically, results of our number comparison task revealed that magnitude judgments involving fractions (fractions vs. fractions; fractions vs. decimals; fractions vs. whole numbers) were more challenging (longer reaction times and lower accuracy) than comparisons not involving fractions (decimals vs. decimals; whole numbers vs. whole numbers; whole numbers vs. decimals). Moreover, responding became slower as a function of the number of fractions involved in the comparison, with performance on FvF trials (involving two fractions) being significantly worse than performance on DvF trials (involving a single fraction), which, in turn, was significantly worse than performance on DvD trials (involving no fractions). Thus, the difficulty in dealing with fraction magnitudes seems to lie in the fraction notation itself, not in comparing across notation.

One possibility is that adults may have converted fractions into approximate decimal magnitudes in order to judge the relative magnitudes of the numbers during the comparison task. Because this conversion process takes time and is error-prone, trials requiring the conversion of two fractions (FvF trials) necessarily took longer and were less accurate than those requiring the conversion of only a single fraction (DvF trials). Given that adults in this
study found decimal magnitude processing easier than fraction magnitude processing, they may have chosen this strategy to maximize performance on the task. However, it should be noted that in a previous study using a similar fraction vs. fraction comparison task, adult participants self-reported using a decimal conversion strategy on only 5.5% of trials, making this possibility seem unlikely (Faulkenberry & Pierce, 2011).

More work directly investigating the strategies used for rational number processing in different contexts (e.g. comparing across notations (0.5 vs ¾) or within the same notation (1/2 vs. 3/4)) will help to determine why it is that comparisons involving fractions take significantly longer than those involving exclusively decimals. In addition, the current study did not address possible strategies used during the comparison of two decimals (DvD). Previous research suggests that, like multi-digit whole numbers, decimals may be processed componentially, digit-by-digit (e.g., Huber, Mann, Nuerk, & Moeller, 2014; Varma & Karl, 2013), making it possible that decimals are not treated as distinct from whole numbers at all (e.g., Huber, Klein, Willmes, Nuerk, & Moeller, 2014). Future studies should further investigate these strategies and performance differences across various notations, including how notation patterns and preferences may change throughout education.

In contrast to the magnitude task, performance on the rational number arithmetic assessment revealed a very different pattern, with faster and more accurate performance on the fraction arithmetic compared to the decimal arithmetic. This suggests that these educated adults were better able to remember and correctly carry out the rules and procedures associated with fraction arithmetic compared to decimal arithmetic, despite encountering more difficulty when processing fraction magnitudes. This pattern of findings may be attributed to differences in the educational focus found in the classroom. Generally
Speaking, U.S. math curriculums often place a greater emphasis on fractions relative to decimals (Common Core State Standards; National Governors Association Center for Best Practices, 2010) thus resulting in greater practice with fraction arithmetic procedures. As such, although fraction magnitudes may be less transparent, fraction arithmetic procedures may be more likely to be remembered correctly, especially in adults who have long since completed instruction in rational number arithmetic procedures. Together, these findings provide support for the idea that fraction notation is less transparent than decimal notation for providing magnitude information, while fraction notation may provide an advantage in arithmetic calculations, at least for educated adults. However, what aspect of fraction notation and procedures is leading to this arithmetic and procedural advantage remains unclear.

One way to approach this question is to investigate whether these preferences for decimal notation in magnitude comparisons and fraction notation in arithmetic are present across development (i.e., from the time they are first introduced in the classroom). On the one hand, fraction notation is generally introduced first in the classroom and given greater emphasis in educational settings early in development. In adulthood, however, experience with decimal notation is much more frequent (e.g., through the monetary system). Thus, it may be the case that children just learning these notations will show a preference for fraction notation in both magnitude and arithmetic tasks, and the processing preference for accessing magnitudes via decimal notation may emerge later as a function of greater experience with this notation-type. On the other hand, evidence indicating that decimal notation may actually provide an important stepping-stone between whole numbers and fractions (e.g., Johnson, 1956; Moss & Case, 1999) would suggest that the observed decimal preference for
magnitude information is due to the increased cognitive simplicity offered by decimal notation, regardless of experience. If so, then children should also demonstrate a preference for decimal notation as soon as these notations are introduced. Similarly for arithmetic procedures, given the emphasis on fraction learning in the classroom and the experience adults have with decimal information, it is unclear how and why adults show a preference for fraction notation in arithmetic contexts. Furthermore, whether the context dependent preferences for fraction notation versus decimal notation are apparent as children are learning fraction and decimal arithmetic rules, or alternatively if educated adults show a distinct pattern only well after they have completed instruction in these procedures is an open question. Investigating these open questions could provide important insights into how the introduction of decimal notation and fraction notation may impact the acquisition of rational number concepts.

Lastly, using eye-tracking data we were able to look more closely at how adults process fraction magnitudes specifically. When comparing fractions, fixations were significantly longer on average to the numerators relative to the denominators. Although stimuli were designed in such a way as to prevent componential, whole number strategies, this looking pattern is consistent with a numerator based whole number bias at the implicit level. Given the inverse relationship between the value of the denominator and the value of the fraction, optimal responding should have involved either longer or at least comparable looking to the denominator relative to the numerator (Huber, Moeller, & Nuerk, 2014). Thus, our finding of an implicit numerator bias are in line with other evidence suggesting that both adults and children often treat fraction components like separate whole numbers (e.g., Ni & Zhou, 2005). Furthermore, those participants who demonstrated a stronger
implicit whole number bias by fixating longer to the numerator relative to the denominator also performed worse on the fraction procedural assessment, even when controlling for rational number procedural ability in decimal notation. This is the first evidence to suggest that, even when the use of whole-number strategies is prevented (by not presenting fractions with common denominators or numerators), evidence of a whole number bias in implicit looking patterns is still found. Importantly, the strength of this implicit bias is negatively associated with procedural performance with fractions even in educated adults who perform fairly well on both tasks.

In conclusion, data from the current study provide strong evidence of an integrated mental continuum of rational numbers, regardless of notation, while also suggesting that fraction magnitudes are much more difficult than either decimal and whole number magnitudes. In contrast to the magnitude task, fraction notation provided an advantage for arithmetic calculation. In addition, while the adults in this study fixated significantly longer at the numerator of the fractions relative to the denominator, individual differences in this measure of whole number bias suggested that looking more to the numerator relative to the denominator suggested poorer understanding of fraction procedures. Together, these findings call for more educational and developmental investigations into rational numbers in fraction, decimal, and whole number notation in both children and adults, in order to clarify exactly how these non-natural number values are represented in the mind and to determine how educational practices can benefit from this greater understanding. These investigations could provide important directions for the development of educational tools to promote rational number understanding via an integrated representation, and to advance math learning in other subsequent areas, like arithmetic and algebra.
References

Hurst, M., & Cordes, S. (under review). The Relationship Between Algebra and Rational Number Understanding in Adults: The Role of Notation-Specific Knowledge Types.

Merkley, R. & Ansari, D. (2010). Using eye-tracking to study numerical cognition: The case...

Rayner, K. (1998). Eye movements in Reading and Information Processing: 20 Years of

Figure 1

Panel A: Slope

Panel B: Average RT
Figure 1: Panel A: Ratio effects, as measured by the slope in RT across ratios, in all comparison types (error bars represent standard error). There were significant ratio effects observed in all comparison types but no difference in the magnitude of ratio effects across comparison types. Panel B: Average reaction time in all comparison types in the number comparison task (error bars represent standard error). There is a clear distinction between comparisons involving fractions and those not involving fractions, with all comparisons involving fractions taking significantly longer than those involving decimals comparisons.
Figure 2

Panel A: Slope

Panel B: Average
Figure 2: Panel A: Ratio effects of looking time to the larger (light grey; on the left) and smaller (dark grey; on the right) stimuli, as measured by the slope across ratios, in all comparison types. Significant ratio effects in fixations to the smaller number stimuli, but not to the larger number, were found in all comparison types (except NvD and only marginally for NvF). **Panel B:** Average looking time to the smaller number and larger number in all comparison types (error bars represent standard error). Looking to the larger number (dark grey; on the right) was significantly higher than to the smaller number (light grey; on the left) in all comparison types.
Figure 3: Fraction arithmetic ability (measured by completion time) was significantly correlated with NUM-DEN, a difference score assessing fixation durations to the numerator minus fixation durations to the denominator in Fraction vs. Fraction trials (positive values are indicative of greater relative looking to numerator and negative values are indicative of more looking to the denominator).
Appendix

Decimal Arithmetic Questions

\[
\begin{align*}
0.5 + 0.13 & \quad 0.63 \div 0.12 \\
1.27 + 0.89 & \quad 1.452 \div 0.48 \\
0.36 - 0.12 & \quad 0.456 \times 0.32 \\
1.74 - 1.321 & \quad 1.75 \times 0.21
\end{align*}
\]

Fraction Arithmetic Questions

\[
\begin{align*}
\frac{3}{4} + \frac{7}{9} & \quad \frac{8}{9} \times \frac{1}{3} \\
\frac{2}{3} + \frac{5}{7} & \quad \frac{4}{5} \times \frac{3}{8} \\
\frac{4}{5} - \frac{4}{8} & \quad \frac{4}{7} \div \frac{3}{5} \\
\frac{6}{7} - \frac{1}{4} & \quad \frac{3}{9} \div \frac{3}{8}
\end{align*}
\]