Taut Foliations, Positive 3-Braids, and the L-Space Conjecture

Siddhi Krishna

Boston College

January 17, 2019
The L-Space Conjecture:

Suppose Y is a closed, irreducible 3-manifold. The following are equivalent:
The L-Space Conjecture:

Suppose Y is a closed, irreducible 3-manifold. The following are equivalent:

- Y admits a taut foliation
- Y is a non-L-space
- $\pi_1(Y)$ is not left orderable
The L-Space Conjecture:
Suppose Y is a closed, irreducible 3-manifold. The following are equivalent:

- Y admits a taut foliation
- Y is a non-L-space
- $\pi_1(Y)$ is not left orderable

“geometry” “Heegaard-Floer homology” “algebra”
The L-Space Conjecture:
Suppose \(Y \) is a closed, irreducible 3-manifold. The following are equivalent:

- \(Y \) admits a taut foliation \(\text{“geometry”} \)
- \(Y \) is a non-L-space \(\text{“Heegaard-Floer homology”} \)
- \(\pi_1(Y) \) is not left orderable \(\text{“algebra”} \)
The L-Space Conjecture:
Suppose Y is a closed, irreducible 3-manifold.
The following are equivalent:

- Y admits a taut foliation
- Y is a non-L-space
- $\pi_1(Y)$ is not left orderable
Taut Foliations

Definition

A taut foliation is

- a decomposition of a manifold into codim-1 submanifolds, called leaves, such that
- there exists a simple closed curve meeting each leaf transversely
An Example

Fibered 3-Manifolds

Start with

- a compact, connected, oriented surface F
- $\varphi : F \to F$, a diffeomorphism of F
An Example

Fibered 3-Manifolds

Start with
- a compact, connected, oriented surface F
- $\varphi : F \rightarrow F$, a diffeomorphism of F

This determines:

$$M_\varphi = F \times I / \varphi = F \times I / ((x, 0) \sim (\varphi(x), 1))$$
An Example

Fibered 3-Manifolds

Start with
- a compact, connected, oriented surface F
- $\varphi : F \to F$, a diffeomorphism of F

This determines:

$$M_\varphi = F \times I / \varphi = F \times I / ((x, 0) \sim (\varphi(x), 1))$$
Fibered 3-Manifolds

Start with
- a compact, connected, oriented surface F
- $\varphi : F \to F$, a diffeomorphism of F

This determines:

$$M_\varphi = F \times I \sslash \varphi = F \times I \sslash ((x, 0) \sim (\varphi(x), 1))$$
Fibered 3-Manifolds

Start with
- a compact, connected, orientable surface F
- $\varphi : F \rightarrow F$, a diffeomorphism of F

This determines:

$$M_\varphi = F \times I \sslash \varphi = F \times I \sslash ((x, 0) \sim (\varphi(x), 1))$$
Fibered 3-Manifolds

Start with
- a compact, connected, orientable surface F
- $\varphi : F \rightarrow F$, a diffeomorphism of F

This determines:

$$M_\varphi = F \times I / \varphi = F \times I / ((x, 0) \sim (\varphi(x), 1))$$
An Example

Fibered 3-Manifolds

Start with
- a compact, connected, orientable surface F
- $\varphi : F \to F$, a diffeomorphism of F

This determines:

$$M_\varphi = \frac{F \times I}{\varphi} = \frac{F \times I}{((x, 0) \sim (\varphi(x), 1))}$$

![Diagram showing fibered 3-manifold](image)
An Example

Fibered 3-Manifolds

Start with
- a compact, connected, orientable surface F
- $\varphi : F \to F$, a diffeomorphism of F

This determines:

$$M_\varphi = F \times I \bigm/ \varphi = F \times I \big/ \{(x, 0) \sim (\varphi(x), 1)\}$$
Fibered 3-Manifolds

Start with

- a compact, connected, orientable surface F
- $\varphi : F \to F$, a diffeomorphism of F

This determines:

$$M_{\varphi} = F \times I / \varphi = F \times I / ((x, 0) \sim (\varphi(x), 1))$$
Taut Foliations in the Literature

Theorem (Thurston ’86):
Compact leaves of taut foliations minimize genus in their homology class.
Taut Foliations in the Literature

Theorem (Thurston ’86): Compact leaves of taut foliations minimize genus in their homology class.

Theorem (Gabai ’87): The “Property R” Conjecture is true, i.e.

\[K \subset S^3, \text{ and } S_0^3(K) \approx S^1 \times S^2, \text{ then } K \approx U. \]
The L-Space Conjecture:
Suppose Y is a closed, irreducible 3-manifold. The following are equivalent:

- Y admits a taut foliation
- Y is a non-L-space
- $\pi_1(Y)$ is not left orderable

"geometry"
"Heegaard-Floer homology"
"algebra"
L-Spaces

“L-spaces are simple from the perspective of Heegaard Floer homology”
"L-spaces are simple from the perspective of Heegaard Floer homology"

Definition

A closed, irreducible 3-manifold Y is an **L-space** if

$$\text{rk}(\widehat{HF}(Y; \mathbb{Z}/2\mathbb{Z})) = |H_1(Y; \mathbb{Z})| < \infty$$
“L-spaces are simple from the perspective of Heegaard Floer homology”

Definition

A closed, irreducible 3-manifold Y is an **L-space** if

$$\text{rk}(\widehat{HF}(Y; \mathbb{Z}/2\mathbb{Z})) = |H_1(Y; \mathbb{Z})| < \infty$$

Remark: $\text{rk}(\widehat{HF}(Y; \mathbb{Z}/2\mathbb{Z})) \geq |H_1(Y; \mathbb{Z})|$ holds for $\mathbb{Q}HS^3$
L-Spaces

“L-spaces are simple from the perspective of Heegaard Floer homology”

Definition

A closed, irreducible 3-manifold Y is an L-space if

$$rk(\hat{HF}(Y; \mathbb{Z}/2\mathbb{Z})) = |H_1(Y; \mathbb{Z})| < \infty$$

Remark: $$rk(\hat{HF}(Y; \mathbb{Z}/2\mathbb{Z})) \geq |H_1(Y; \mathbb{Z})|$$ holds for $\mathbb{Q} HS^3$

Examples: Lens Spaces \subset Manifolds with Elliptic Geometry
The L-Space Conjecture Revisited

The L-Space Conjecture:
Suppose Y is a closed, irreducible 3-manifold. The following are equivalent:

- Y admits a taut foliation
- Y is a non-L-space
- $\pi_1(Y)$ is not left orderable

The manifolds are "extra."
The L-Space Conjecture Revisited

The L-Space Conjecture:
Suppose Y is a closed, irreducible 3-manifold. The following are equivalent:

- Y admits a taut foliation
- Y is a non-L-space
- $\pi_1(Y)$ is not left orderable

These manifolds are “extra”.

“geometry”

“Heegaard-Floer homology”

“algebra”
Evidence for the LSC

Theorem (Ozsváth and Szabó):
If \(Y \) admits a taut foliation, then \(Y \) is a non-L-space.
Evidence for the LSC

Theorem (Ozsváth and Szabó):
If Y admits a taut foliation, then Y is a non-L-space.

Theorem: The L-Space Conjecture is true for graph manifolds.
Evidence for the LSC

Theorem (Ozsváth and Szabó):
If \(Y \) admits a taut foliation, then \(Y \) is a non-L-space.

Theorem: The L-Space Conjecture is true for **graph manifolds**.
Proof: Input by many!

For Y is a closed, irreducible 3-manifold:

- Y admits a taut foliation
- Y is a non-L-space

The Ozsváth-Szabó method connects these two properties.
For Y is a closed, irreducible 3-manifold:

Y admits a taut foliation \Rightarrow Y is a non-L-space

Ozsváth-Szabó

Siddhi Krishna

Constructing Taut Foliations in Positive 3-Braid Exteriors
Focusing on Foliations

For Y is a closed, irreducible 3-manifold:

Y admits a taut foliation \Rightarrow Y is a non-L-space

Ozsváth-Szabó

Questions: How do we
(1) identify non-L-spaces?
For Y is a closed, irreducible 3-manifold: Y admits a taut foliation Y is a non-L-space

Questions: How do we
(1) identify non-L-spaces?
(2) build taut foliations in them?
For Y is a closed, irreducible 3-manifold:

Y admits a taut foliation \rightarrow Y is a non-L-space

Ozsváth-Szabó

Questions: How do we

(1) identify non-L-spaces?
(2) build taut foliations in them?
A non-trivial knot $K \subset S^3$ is an **L-Space knot** if K admits a non-trivial surgery to an L-space.
Producing Non-L-Spaces via Dehn Surgery

Definition

A non-trivial knot $K \subset S^3$ is an **L-Space knot** if K admits a non-trivial surgery to an L-space.

Examples: Torus knots
Suppose $K \subset S^3$.
Suppose $K \subset S^3$. Then either:

1. K isn’t an L-space knot:

2. K is an L-space knot:

Theorem: (Kronheimer-Mrowka-Ozsváth-Szabó; J+S Rasmussen):

For $r \in \mathbb{Q}$, $S^3_r(K) = \begin{cases}
\text{non-L-space} & r < 2g(K) - 1 \\
\text{L-space} & r \geq 2g(K) - 1
\end{cases}$

If $r < 2g(K) - 1$, then $S^3_r(K)$ is always a non-L-space. Therefore, the LSC predicts it admits a taut foliation.
Suppose $K \subset S^3$. Then either:

(1) K isn’t an L-space knot:

(2) K is an L-space knot:
Suppose $K \subset S^3$. Then either:

1. \textbf{K isn’t an L-space knot:}
 For all $r \in \mathbb{Q}$, $S^3_r(K)$ is a non-L-space.

2. \textbf{K is an L-space knot:}

Producing Non-L-Spaces via Dehn Surgery
Suppose $K \subset S^3$. Then either:

(1) K isn’t an L-space knot:
 For all $r \in \mathbb{Q}$, $S^3_r(K)$ is a non-L-space.

(2) K is an L-space knot:

Theorem (Kronheimer-Mrowka-Ozsváth-Szabó; J+S Rasmussen):

For $r \in \mathbb{Q}$, $S^3_r(K) = \begin{cases}
\text{non-L-space} & r < 2g(K) - 1 \\
\text{L-space} & r \geq 2g(K) - 1
\end{cases}$
Producing Non-L-Spaces via Dehn Surgery

Suppose $K \subset S^3$. Then either:

1. *K isn’t an L-space knot*
 For all $r \in \mathbb{Q}$, $S^3_r(K)$ is a non-L-space.

2. *K is an L-space knot*

 Theorem (Kronheimer-Mrowka-Ozsváth-Szabó; J+S Rasmussen):

 For $r \in \mathbb{Q}$, $S^3_r(K) = \begin{cases}
 \text{non-L-space} & r < 2g(K) - 1 \\
 \text{L-space} & r \geq 2g(K) - 1
 \end{cases}$

 If $r < 2g(K) - 1$, then $S^3_r(K)$ is **always** a non-L-space.

 Therefore, the LSC predicts a taut foliation.
Theorem (K.)

Suppose $K \subset S^3$ is the closure of a positive 3-braid. Then for all rational $r < 2g(K) - 1$, $S^3_r(K)$ admits a taut foliation.
Theorem (K.)

Suppose $K \subset S^3$ is the closure of a positive 3-braid. Then for all rational $r < 2g(K) - 1$, $S^3_r(K)$ admits a taut foliation.

Example: The $P(-2, 3, 7)$ (Fintushel-Stern) Pretzel Knot
Theorem (K.)

Suppose $K \subset S^3$ is the closure of a positive 3-braid. Then for all rational $r < 2g(K) - 1$, $S^3_r(K)$ admits a taut foliation.

Example: The $P(-2,3,7)$ (Fintushel-Stern) Pretzel Knot
A New Theorem

Theorem (K.)

Suppose $K \subset S^3$ is the **closure of a positive 3-braid**. Then for all rational $r < 2g(K) - 1$, $S^3_r(K)$ admits a taut foliation.
A New Theorem

Theorem (K.)

Suppose $K \subset S^3$ is the closure of a positive 3-braid. Then for all rational $r < 2g(K) - 1$, $S_r^3(K)$ admits a taut foliation.

Remark: Applying (Lidman-Moore '16), we get the first example of Y is a non-L-space $\iff Y$ admits a taut foliation for every non-L-space obtained by Dehn surgery along an infinite family of hyperbolic L-space knots.
What’s Known, Revisited

For Y is a closed, irreducible 3-manifold:

Y admits a taut foliation \Rightarrow Y is a non-L-space

Ozsváth-Szabó

Questions: How do we
(1) identify non-L-spaces?
(2) build taut foliations in them?
What’s Known, Revisited

For Y is a closed, irreducible 3-manifold:

Y admits a taut foliation \Rightarrow Y is a non-L-space

Ozsváth-Szabó

Questions: How do we
(1) identify non-L-spaces? Dehn Surgery
(2) build taut foliations in them?
What’s Known, Revisited

For Y is a closed, irreducible 3-manifold:

Y admits a taut foliation $\quad Y$ is a non-L-space

Ozsváth-Szabó

Questions: How do we

1. identify non-L-spaces? Dehn Surgery
2. build taut foliations in them? Branched Surfaces
A **branched surface** is a “co-oriented 2-complex”, locally modelled by:

![Diagram of branched surfaces](image-url)
Branched Surfaces

Definition

A **branched surface** is a “co-oriented 2-complex”, locally modelled by:

![Diagram of branched surfaces](image-url)
A **branched surface** is a “co-oriented 2-complex”, locally modelled by:

Branched surfaces can encode data about

1. surfaces in 3-manifolds (Oertel; Floyd-Oertel)
2. laminations in 3-manifolds (Li)
3. foliations of 3-manifolds (Roberts)
Branched Surfaces

Definition

A **branched surface** is a “co-oriented 2-complex”, locally modelled by:

Branched surfaces can encode data about

1. surfaces in 3-manifolds (Oertel; Floyd-Oertel)
2. laminations in 3-manifolds (Li)
3. foliations of 3-manifolds (Roberts)
Branched Surfaces and Taut Foliations

Theorem (K.)

Suppose $K \subset S^3$ is the closure of a positive 3-braid. Then for all rational $r < 2g(K) - 1$, $S^3_r(K)$ admits a taut foliation.
Branched Surfaces and Taut Foliations

Theorem (K.)
Suppose $K \subset S^3$ is the closure of a positive 3-braid. Then for all rational $r < 2g(K) - 1$, $S^3_r(K)$ admits a taut foliation.

Proof Sketch:
(1) Identify a fiber surface for K in $X_K = S^3 - \nu(K) = F \times I / \varphi$
Theorem (K.)

Suppose $K \subset S^3$ is the closure of a positive 3-braid. Then for all rational $r < 2g(K) - 1$, $S^3_r(K)$ admits a taut foliation.

Proof Sketch:

1. Identify a fiber surface for K in $X_K = S^3 - \nu(K) = F \times I / \varphi$
2. Use the fibration to build a branched surface B in X_K
Branched Surfaces and Taut Foliations

Theorem (K.)

Suppose $K \subset S^3$ is the closure of a positive 3-braid. Then for all rational $r < 2g(K) - 1$, $S^3_r(K)$ admits a taut foliation.

Proof Sketch:

(1) Identify a **fiber surface** for K in $X_K = S^3 - \nu(K) = F \times I / \varphi$

(2) Use the fibration to build a branched surface B in X_K

(3) Use B to build a taut foliation in X_K
Branched Surfaces and Taut Foliations

Theorem (K.)

Suppose $K \subset S^3$ is the closure of a positive 3-braid. Then for all rational $r < 2g(K) - 1$, $S^3_r(K)$ admits a taut foliation.

Proof Sketch:

1. Identify a **fiber surface** for K in $X_K = S^3 - \nu(K) = F \times I / \varphi$

2. Use the fibration to build a branched surface B in X_K

3. Use B to build a taut foliation in X_K

4. Understand how \mathcal{F} meets ∂X_K
Branched Surfaces and Taut Foliations

Theorem (K.)
Suppose $K \subset S^3$ is the closure of a positive 3-braid. Then for all rational $r < 2g(K) - 1$, $S^3_r(K)$ admits a taut foliation.

Proof Sketch:
1. Identify a fiber surface for K in $X_K = S^3 - \nu(K) = F \times I / \phi$
2. Use the fibration to build a branched surface B in X_K
3. Use B to build a taut foliation in X_K
4. Understand how \mathcal{F} meets ∂X_K
5. Dehn fill to produce a taut foliation in $S^3_r(K)$
Branched Surfaces and Taut Foliations

Theorem (K.)

Suppose $K \subset S^3$ is the closure of a positive 3-braid. Then for all rational $r < 2g(K) - 1$, $S_r^3(K)$ admits a taut foliation.

Proof Sketch:

1. Identify a fiber surface for K in $X_K = S^3 - \nu(K) = F \times I / \varphi$
2. Use the fibration to build a branched surface B in X_K
3. Use B to build a taut foliation in X_K
4. Understand how \mathcal{F} meets ∂X_K
5. Dehn fill to produce a taut foliation in $S_r^3(K)$

Branched surfaces give a recipe for building taut foliations.