MATH 1102 Homework 5

Due Wednesday October 22, 2014

Book problems for practice (not to hand in):

VIII.1 p. 244 1-14.
VIII.2 p. 255 1-5, 7-19

Problems to hand in: (Be sure to write coherently, using sentences where possible, and say what you are computing or doing.)

Problem A. Compute the derivatives of the following functions \(f(x) \).

i) \(f(x) = \log(\cos x) \),
ii) \(f(x) = e^{-x^2} \),
iii) \(f(x) = x \log x \),
iv) \(f(x) = e^{x(\sin x)} \),
v) \(f(x) = 2^x \),
vii) \(f(x) = 2^{\arctan x} \)

Solution.

i) \(f'(x) = \frac{1}{\cos x} \cdot (\cos x)' = \frac{-\sin x}{\cos x} = -\tan x \).

Problem B. Consider the function \(f(x) = x^x \), defined for \(x > 0 \).

i) Compute \(f'(x) \) and find the point(s) \(x \) where \(f'(x) \) is positive, negative and zero.

ii) Compute \(f''(x) \) and find the point(s) \(x \) where \(f'(x) \) is positive, negative and zero.

iii) Use your information from i) and ii) to sketch the graph of \(x^x \).

Problem C. Suppose \(f(x) \) is a differentiable function such that \(f'(x) = 2f(x) \) and \(f(0) = 1 \). Prove that \(f(x) = e^{2x} \).

Problem D. Compute the limits

\[
\begin{align*}
\text{i) } \lim_{h \to 0} & \frac{\log(1 + h)}{h}, \\
\text{ii) } \lim_{h \to 0} & \frac{e^h - 1}{h}, \\
\text{iii) } \lim_{h \to 0} & \frac{2^h - 1}{h}.
\end{align*}
\]

Hint: consider the derivatives of \(\log(1 + x) \), \(e^x \), and \(2^x \).

Problem E. Find the Taylor polynomial \(p(x) = c_0 + c_1 x + c_2 x^2 + \cdots \) of the function \(f(x) = \log(x + 1) \) and use it to give an approximation to \(\log(2) \) that is accurate to within \(1/10 \).

Problem F. The **Hyperbolic trigonometric functions** \(\cosh(x) \) and \(\sinh(x) \) \(^1\) are defined by

\[\cosh x = \frac{e^x + e^{-x}}{2}, \quad \sinh x = \frac{e^x - e^{-x}}{2}. \]

i) Show that \(\cosh^2 x - \sinh^2 x = 1 \). Explain why these functions are called “hyperbolic”.

ii) Show that \((\cosh x)' = \sinh x \) and \((\sinh x)' = \cosh x \).

\(^1\) pronounced “kosh” and “cinch”
iii) Compute the Taylor polynomials \(p(x) = c_0 + c_1 x + c_2 x^2 + \cdots \) for \(\cosh x \) and \(\sinh x \) and compare with the Taylor polynomials for \(\cos x \) and \(\sin x \).

Problem G. Let \(\text{arcsinh} \, x \) be the inverse function of \(\sinh x \). Compute the derivative of \(\text{arcsinh} \, x \).