MATH 1103 Homework 6
Due Friday February 27, 2015

Problem 1. Find the volumes of the solids obtained by revolving the following graphs about the x-axis. Draw a picture of each solid.

a) \(y = 1 - x^2, \ -1 \leq x \leq 1 \)

b) \(y = \sin x, \ 0 \leq x \leq \pi \)

c) \(y = e^{-x}, \ 0 \leq x \leq b, \) and also \(0 \leq x < \infty. \)

d) \(y = \frac{1}{x}, \ 1 \leq x \leq b, \) and also \(1 \leq x < \infty. \)

Problem 2. Let \(a, b \) be positive constants. The equation

\[
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1
\]

Defines an ellipse in the x, y plane.

a) Find the area of this ellipse. [Hint: Find the area of 1/4 of the ellipse, and use the substitution \(x = a \sin \theta. \)]

b) If we revolve this ellipse about the x-axis, we obtain a special kind of ellipsoid - one having circular cross-sections like a cigar. Find the volume of this ellipsoid.

Problem 3. Let \(a, b, c \) be positive constants. The equation

\[
\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1
\]

Defines a general ellipsoid in three-dimensional x, y, z space. The z-coordinate varies between \(-c\) and \(c\). Each fixed value of \(z\) determines a slice of the ellipsoid, which is an ellipse with equation

\[
\frac{x^2}{a_z^2} + \frac{y^2}{b_z^2} = 1,
\]

where

\[
a_z = a \cdot \sqrt{1 - \frac{z^2}{c^2}}, \quad \text{and} \quad b_z = b \cdot \sqrt{1 - \frac{z^2}{c^2}}.
\]

Use Cavalieri’s principle and your result from part a) above to compute the volume of this ellipsoid. [The ellipsoid in part b) above is the special case \(c = b\).]

Problem 4. The goal of this problem is to compute the volume of a bagel. We will apply Cavalieri’s principle to the slices made by a bagel slicer. Our bagel is obtained by rotating the circle of radius \(a\) centered at \((0,b)\) about the x-axis, where \(a, b\) are constants with \(0 < a < b\). And \(x\) will vary from \(-a\) to \(a\).
a) What is the area of the bagel slice at \(x \)?

b) Integrate the above slices to obtain the volume of the bagel. (It is easier to find the volume of half a bagel, then multiply by two.)

Problem 5. Find the lengths of the following curves.

a) \(y = \frac{2}{3}(x - 1)^{3/2}, \ 1 \leq x \leq 2 \)

b) \(y = \log \cos x, \ 0 \leq x \leq \pi/4 \) (you will need \(\int \sec x \) which you can find on the back inside cover of our text; no need to derive it.)

c) \(y = x^2 - \frac{1}{8} \log x, \ 1 \leq x \leq 2. \)

d) \(y = x^{3/2}, \ 0 \leq x \leq 4. \)

This next problem relates the arc length integrand \(\sqrt{1 + \left(f'(x) \right)^2} \) to curvature. Don’t worry if you’ve never heard of curvature before; all you need to do this problem is right here. More discussion of curvature is found in my Math 1102 notes, section 3.6.

The *Curvature* of a graph \(y = f(x) \) is the function

\[
\kappa_f(x) = \frac{f''(x)}{(1 + (f'(x))^2)^{3/2}},
\]

which measures how much the curve is bending at the point \((x, f(x))\), where upward bending counts positive, and downward counts negative. The *total curvature* of the graph \(y = f(x) \) on \([a, b]\) is the integral of the curvature:

\[
\int_a^b \kappa_f(x) \, dx.
\]

Let \(\theta(x) \) be the angle of elevation made by the tangent line to the graph at \((x, f(x))\), in the positive \(x \)-direction.

a) Express \(\sin \theta(x) \) in terms of \(f'(x) \).

b) Show that \(\frac{d}{dx} \sin \theta(x) = \kappa_f(x) \).

c) Use the FTC to show that the total curvature of a rope depends only on the angle of the rope at the endpoints; if you keep these angles fixed and wiggle the rope in the middle, the total curvature won’t change.