Math 210 Linear Algebra
Mark Reeder
Fall 2011

The chapters below are/will be the text for the course. 

Up through Chapter 10 they will not change, except to correct typos.
The remaining chapters are subject to heavy revision, and there may be a few more chapters added.

All files are in PDF. View them with Adobe Acrobat. 

Solution links become active after the homework is turned in. 


Syllabus
 

Chapter 1    Arithmetic of 2x2 Matrices  solutions

Chapter 2    Special Types of Matrices  solutions

Chapter 3    Determinant and Trace  solutions

Chapter 4    Matrices as Linear Maps  solutions

Chapter 5    Reflection Matrices  solutions

Chapter 6    Fibonacci Numbers  solutions

Chapter 7    Migration  solutions

Chapter 8    Eigenvalues and Eigenvectors  solutions

Chapter 9    Multiple Eigenvalues and Nilpotent Matrices  solutions

Exam 1 study problems  solutions

Exam 1 solutions

Chapter 10  Complex Eigenvalues   solutions

Chapter 11, with solutions The geometry of the determinant and the Iwasawa decomposition   

Chapter 12  Differential Equations    solutions  (omitted Fall 2011)

Chapter 13  Vectors in Three-Dimensional Space  solutions

Chapter 14   Three-by-Three Matrices and Determinants   solutions

Chapter 15  The Kernel of a Three-by-Three Matrix   solutions  

Chapter 16  Three-by-Three Eigenvalues and Eigenvectors  solutions

Chapter 17   Orthogonal Matrices  and Symmetries of Space  solutions

Chapter 18  Introduction to Four Dimensions    solutions

Exam 2 study problems, with solutions

Exam 2 solutions

Chapter 19  General Matrices    solutions

Chapter 20  Vector Spaces and Bases  solutions

Chapter 21  The dimension of a vector space  solutions

Chapter 22  Subspaces, Linear Maps and the Kernel-Image theorem  solutions

Chapter 23  Change of Basis  solutions

Final Study Problems (with solutions)

The Linear Algebra behind Google (by K. Bryan and T. Leise)