MT310 Homework 11

Solutions

Due Friday, April 30 by 5:00

Exercise 1. Let F be a field, let V be a vector space over F and let V^0 be the set of nonzero vectors in V. For $u,v \in V^0$, say that $u \sim v$ if there exists $a \in F$ such that $au = v$. Prove that this is an equivalence relation on V^0.

Comment. If $[u]$ is an equivalence class under this relation, the set $[u] \cup \{0\}$ is called a line in V.

Proof. Reflexivity: If $u \sim v$ then there exists $a \in F$ such that $au = v$, so $a^{-1}u = v$ so $v \sim u$.

Symmetry: $u = 1 \cdot u$ so $u \sim u$.

Transitivity: If $u \sim v$ and $v \sim w$ then there exist $a,b \in F$ with $au = v$ and $bv = w$. Hence $bau = bv = w$, so $u \sim w$. \hfill \Box

Optional Exercise for Extra Credit (20 points total)

[Solutions Posted Separately]

Exercise 2. Let $K \subset F \subset E$ be three fields. Suppose that $\{\alpha_1, \ldots, \alpha_m\}$ is a K-basis of F and $\{\beta_1, \ldots, \beta_n\}$ is an F-basis of E. Prove that $\{\alpha_i \beta_j : 1 \leq i \leq m, 1 \leq j \leq n\}$ is a K-basis of E.

Comment. This proves that the degree of a field extension is multiplicative: $[E : K] = [E : F][F : K]$.

Proof. Let $\gamma \in E$. Since $\{\beta_1, \ldots, \beta_n\}$ spans E over F, there are $f_j \in F$ such that $\gamma = \sum_{j=1}^{n} f_j \beta_j$. Since $\{\alpha_1, \ldots, \alpha_m\}$ spans F over Kd, there are, for each j, elements $c_{ij} \in K$ such that $f_j = \sum_{i=1}^{m} c_{ij} \alpha_i$. Hence the set $\{\alpha_i \beta_j : 1 \leq i \leq m, 1 \leq j \leq n\}$ spans E over K.

Suppose we have scalars $c_{ij} \in K$ such that

$$\sum_{j=1}^{n} \sum_{i=1}^{m} c_{ij} \alpha_i \beta_j = 0.$$

Since $\{\beta_1, \ldots, \beta_n\}$ is linearly independent, we have $\sum_{i=1}^{m} c_{ij} \alpha_i = 0$ for each i. Since $\{\alpha_1, \ldots, \alpha_m\}$ is linearly independent, we have $c_{ij} = 0$ for each i, j. Hence the set $\{\alpha_i \beta_j : 1 \leq i \leq m, 1 \leq j \leq n\}$ is linearly independent. Since this set spans E and is linearly independent over F, it is a an F-basis of E. \hfill \Box

Exercise 3. Let $\alpha = \sqrt{2}$, $\zeta = e^{2\pi i/3}$, $F = \mathbb{Q}(\alpha)$ and $E = F(\zeta)$. Compute $[E : \mathbb{Q}]$.

Comment. On the previous homework, you showed that the roots of $x^3 - 2$ are $\alpha, \alpha \zeta, \alpha \zeta^2$. The field E is smallest subfield of \mathbb{C} containing these roots.

Solution. We have $[E : \mathbb{Q}] = [E : \mathbb{Q}(\alpha)][\mathbb{Q}(\alpha) : \mathbb{Q}] = 3[E : F]$. The minimal polynomial of ζ over \mathbb{Q} is $x^2 + x + 1$, whose roots are complex, and do not lie in F. So $x^2 + x + 1$ is irreducible over F, and is also the minimal polynomial of α over F. It follows that $E = F(\zeta) = 2$, so $[E : \mathbb{Q}] = 3 \cdot 2 = 6$. \hfill \Box

Exercise 4. Let $p > 2$ be a prime, let $\alpha = 2 \cos(2\pi/p)$ and let $p_{\alpha}(x)$ be the minimal polynomial of α over \mathbb{Q}. Compute the degree of $p_{\alpha}(x)$.

(A formula for $p_{\alpha}(x)$ was stated in class without proof. Do not use this formula.)

Hint: Note that $\alpha = \zeta + \zeta^{-1}$, where $\zeta = e^{2\pi i/p}$. Compute $[\mathbb{Q}(\zeta) : \mathbb{Q}]$ and $[\mathbb{Q}(\zeta) : \mathbb{Q}(\alpha)]$, to deduce $[\mathbb{Q}(\alpha) : \mathbb{Q}]$.

c) Find the minimal polynomial of \(\zeta \).

Hint: Factor \(\mathbb{Q} \).

b) Show that \(\mathbb{Q} \) respectively. Assume that \(\gcd(m, n) = 1 \).

Solution. Let \(\alpha, \beta \in \mathbb{C} \) be two algebraic numbers whose minimal polynomials have degrees \(m, n \) respectively. Assume that \(\gcd(m, n) = 1 \). Prove that \(\mathbb{Q}(\alpha) \cap \mathbb{Q}(\beta) = \mathbb{Q} \).

Solution. Let \(F = \mathbb{Q}(\alpha) \cap \mathbb{Q}(\beta) \). Then \(n = [\mathbb{Q}(\alpha) : \mathbb{Q}] = [\mathbb{Q}(\alpha) : F] \cdot [F : \mathbb{Q}] \), so \([F : \mathbb{Q}] \) divides \(n \).

Likewise \([F : \mathbb{Q}] \) divides \(m \). Since \(\gcd(m, n) = 1 \), we have \([F : \mathbb{Q}] = 1 \), that is, \(F = \mathbb{Q} \).

Exercise 6. Let \(\zeta = e^{2\pi i/5} \) and let \(\tau = (1 + \sqrt{5})/2 \) be the golden ratio.

a) Compute \([\mathbb{Q}(\zeta) : \mathbb{Q}]\).

b) Show that \(\mathbb{Q}(\tau) \subset \mathbb{Q}(\zeta) \).

c) Find the minimal polynomial of \(\zeta \) over \(\mathbb{Q}(\tau) \).

Hint: Factor \(x^4 + x^3 + x^2 + x + 1 = (x^2 + ax + 1)(x^2 + bx + 1) \) with \(a, b \in \mathbb{R} \).

Solution.

a) The minimal polynomial of \(\zeta \) over \(\mathbb{Q} \) is \(x^4 + x^3 + x^2 + x + 1 \), so \([\mathbb{Q}(\zeta) : \mathbb{Q}] = 4 \).

b) It suffices to show that \(\tau \in \mathbb{Q}(\zeta) \). From class, we know that

\[
\zeta + \zeta^{-1} = 2 \cos(2\pi/5) = \frac{1}{2}(-1 + \sqrt{5}) = \tau - 1.
\]

hence \(\tau = 1 + \zeta + \zeta^{-1} \in \mathbb{Q}(\zeta) \).

c) There are various ways to do this. One way is to use the previous result: \(\tau = 1 + \zeta + \zeta^{-1} \), so \(\zeta \tau = \zeta + \zeta^2 + 1 \), so \(\zeta \) is a root of \(x^2 + (1 - \tau)\zeta + 1 \).

Another way is to follow the hint and try to factor

\[
x^4 + x^3 + x^2 + x + 1 = (x^2 + ax + 1)(x^2 + bx + 1) = x^4 + (a + b)x^3 + (2 + ab)x^2 + (a + b)x + 1.
\]

We must have \(b = 1 - a \), and \(2 + a(1 - a) = 1 \), or \(a^2 - a - 1 = 0 \). This means \(\{a, b\} = \{\tau, 1 - \tau\} \). Now \(\zeta \) is root of either \(x^2 + \tau x + 1 \) or \(x^2 + (1 - \tau)x + 1 \). But \(\zeta^2 + \tau + 1 \) has positive imaginary part, hence is not zero. So we again find that \(\zeta \) is a root of \(x^2 + (1 - \tau)\zeta + 1 \).