Exercise 1. If group G acts on a set X and $H \leq G$, let $X^H = \{ x \in X : h \cdot x = x \}$ denote the fixed-point set of H in X.

a) Prove that the normalizer $N_G(H)$ of H in G preserves X^H. [That is, prove that $n \cdot x \in X^H$ for all $n \in N_G(H)$ and $x \in X^H$.]

b) Prove that the center of S_X is trivial if $|X| \geq 3$. [Hint: Let $x \in X$ and apply a) to the group $G = S_X$, with $H = S_{X - \{x\}}$ the subgroup of G fixing x. Note that we do not require X to be finite.]

Exercise 2. Let F be a field, let $G = GL_n(F)$, let T be the subgroup of diagonal matrices in G, and let N be the normalizer of T in G. Prove that $N/T \simeq S_n$. [Hint: Consider the fixed-points of T in $\mathbb{P}^{n-1}(F)$.]

Exercise 3. Prove that each of the following groups is isomorphic to S_4, the symmetric group on four letters. Do not use the classification of groups of order 24. Rather, find in each case an isomorphism $f : G \to S_4$ arising from an action of G on a set with four elements.

a) $G = PGL_2(3)$.
b) G is the group of orientation-preserving symmetries of the cube.
c) G is the group of all symmetries of the tetrahedron.
d) G is the automorphism group of S_4.
e) G is a group of order 24 in which no Sylow subgroup is normal.

Proof.

Exercise 4. Suppose H is a subgroup of the symmetric group S_n with $[S_n : H] = n$. Prove the following.

a) $H \simeq S_{n-1}$. [Consider the action of S_n on S_n/H.]
b) If S_n has a transitive subgroup of index n then S_n has an automorphism which is not inner.
c) S_5 has 6 subgroups of order 5.
d) S_6 has an automorphism which is not inner.

Exercise 5. Compute the orders of $PSL_3(4)$ and $PSL_4(2)$. Then show that these groups are not isomorphic. [Hint: Consider the normalizer of a Sylow 2-subgroup.]

Exercise 6. Determine the structure of a Sylow 2-subgroup of $SL_2(3)$ and use this to decide whether $SL_2(3) \simeq S_4$ or not.
Exercise 7. Complete the following alternative proof of Cauchy’s theorem stating that if p divides the order of a group G then G has an element of order p:
Let $X = \{(g_0, g_1, \ldots, g_{p-1}) : g_0g_1\cdots g_{p-1} = 1\}$ and let $\mathbb{Z}/p\mathbb{Z}$ act on X by $k \cdot (g_0, g_1, \ldots, g_{p-1}) = (g_k, g_{k+1}, \ldots, g_{k+p-1})$, where the subscripts are read modulo p. Consider fixed points.

Exercise 8. Let G be a group of order $m \cdot p^r$, where $m \leq 5$, p is a prime not dividing m, and r is any positive integer. Prove that G is not simple.

Exercise 9. Let p be the smallest prime dividing $|G|$. If the Sylow p-subgroups in G are isomorphic to $C_p \times C_p$ then either G has a normal p-complement or the following holds: $p = 2$ and $|N_G(P)/C_G(P)| = 3$ and G has a unique conjugacy class of elements of order two.

Exercise 10. Prove that no group of order < 60 is simple. You are allowed to consider two particular orders, and the rest of the orders must be ruled out by general results (such as the previous two exercises).