Definition V.1

A lesser magnitude a is part of a greater magnitude b if a measures b.
magnitude: length, area, volume, angle, positive integer (number)
to measure: to divide

Definition V.2

If a is a part of b (as in def. V.1), we say b is a multiple of a.

Definition V.3

A ratio is a sort of relation between two magnitudes a, b of the same kind, denoted
$a : b$ or $\frac{a}{b}$.

Definition V.4

1
To have a ratio, a sufficiently large multiple of \(a \) must exceed \(b \), and vice versa (i.e. neither \(a \) nor \(b \) can be infinitely large or small).

Examples:

Definition V.5
\[a : b = c : d \] if for all positive integers \(n, m \), \(na > mb \) implies \(nc > nd \), \(na = mb \) implies \(nc = md \), and \(na < mb \) implies \(nc < md \).

Definition V.6
When two ratios are equal, this equality is called a proportion.

Definition V.7
If there exists positive integers \(n, m \) so that \(na > mb \) but \(nc \leq md \), then we say \(a : b > c : d \).